极化码:信道极化原理(二)——两信道极化定理证明
前言:
极化码:信道极化原理(一)——两信道极化
正文:
定理:经过 ( W , W ) ↦ ( W 2 ( 1 ) , W 2 ( 2 ) ) (W,W)\mapsto (W_{2}^{(1)},W_{2}^{(2)}) (W,W)↦(W2(1),W2(2))的极化变换后, W 2 ( 1 ) W_{2}^{\left( 1 \right)} W2(1)与 W 2 ( 2 ) W_{2}^{\left( 2 \right)} W2(2)的信道容量满足
I ( W 2 ( 1 ) ) + I ( W 2 ( 2 ) ) = 2 I ( W ) , (1) I(W_{2}^{(1)})+I(W_{2}^{(2)})=2I(W), \tag{1} I(W2(1))+I(W2(2))=2I(W),(1)
I ( W 2 ( 1 ) ) ⩽ I ( W ) ⩽ I ( W 2 ( 2 ) ) . (2) I(W_{2}^{(1)}) \leqslant I(W) \leqslant I(W_{2}^{(2)}). \tag{2} I(W2(1))⩽I(W)⩽I(W2(2)).(2)
证明:给定大小字母 X X X和 Y Y Y分别表示 x x x和 y y y的随机变量,有
I ( W 2 ( 1 ) ) = I ( U 1 ; Y 1 Y 2 ) I(W_{2}^{(1)}) = I(U_1;Y_1Y_2) I(W2(1))=I(U1;Y1Y2)
I ( W 2 ( 2 ) ) = I ( U 1 ; Y 1 Y 2 ∣ U 2 ) I(W_{2}^{(2)}) = I(U_1;Y_1Y_2|U_2) I(W2(2))=I(U1;Y1Y2∣U2)
接着,可得
I ( W 2 ( 1 ) ) + I ( W 2 ( 2 ) ) = I ( U 1 ; Y 1 Y 2 ) + I ( U 1 ; Y 1 Y 2 ∣ U 2 ) = I ( U 1 , U 2 ; Y 1 ; Y 2 ) = I ( X 1 , X 2 ; Y 1 ; Y 2 ) = I ( X 1 ; Y 1 ) + I ( X 2 ; Y 2 ) = 2 I ( W ) \begin{aligned} I(W_{2}^{(1)}) + I(W_{2}^{(2)}) &= I(U_1;Y_1Y_2) + I(U_1;Y_1Y_2|U_2)\\ &=I(U_1,U_2;Y_1;Y_2) \\ &=I(X_1,X_2;Y_1;Y_2) \\ &=I(X_1;Y_1) + I(X_2;Y_2)\\ &=2I(W) \end{aligned} I(W2(1))+I(W2(2))=I(U1;Y1Y2)+I(U1;Y1Y2∣U2)=I(U1,U2;Y1;Y2)=I(X1,X2;Y1;Y2)=I(X1;Y1)+I(X2;Y2)=2I(W)
至此,公式(1)证明完毕。
为证明公式(2),有
I ( W 2 ( 2 ) ) = I ( U 1 ; Y 1 Y 2 ∣ U 2 ) = I ( U 1 ; Y 1 ∣ U 2 ) + I ( U 1 ; Y 2 ∣ U 2 , Y 1 ) = I ( U 1 ; Y 1 ) + I ( U 1 ; Y 2 ∣ U 2 , Y 1 ) = I ( W ) + I ( U 1 ; Y 2 ∣ U 2 , Y 1 ) ≥ I ( W ) \begin{aligned} I(W_{2}^{(2)}) &= I(U_1;Y_1Y_2|U_2) \\ &= I(U_1;Y_1|U_2) + I(U_1;Y_2|U_2, Y_1) \\ & = I(U_1;Y_1) + I(U_1;Y_2|U_2, Y_1) \\ & = I(W) + I(U_1;Y_2|U_2, Y_1) \\ & \ge I(W) \end{aligned} I(W2(2))=I(U1;Y1Y2∣U2)=I(U1;Y1∣U2)+I(U1;Y2∣U2,Y1)=I(U1;Y1)+I(U1;Y2∣U2,Y1)=I(W)+I(U1;Y2∣U2,Y1)≥I(W)
至此,公式(2)证明完毕。
参考文献
[1] E. Arıkan, “Channel polarization: A method for constructing capacity achieving codes for symmetric binary-input memoryless channels,” IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
