ICP代码分析
PCL点云库的传统ICP代码分析
- ICP算法的介绍
- PCL里面的源码分析
ICP算法的介绍
ICP(Iterative Closest Point),即最近点迭代算法,是最为经典的数据配准算法。其特征在于,通过求取源点云和目标点云之间的对应点对,基于对应点对构造旋转平移矩阵,并利用所求矩阵,将源点云变换到目标点云的坐标系下,估计变换后源点云与目标点云的误差函数,若误差函数值大于阀值,则迭代进行上述运算直到满足给定的误差要求.
ICP算法采用最小二乘估计计算变换矩阵,原理简单且具有较好的精度,但是由于采用了迭代计算,导致算法计算速度较慢,而且采用ICP进行配准计算时,其对待配准点云的初始位置有一定要求,若所选初始位置不合理,则会导致算法陷入局部最优。。
PCL里面的源码分析
我接下来对pcl里面的源码了解了下,大体有些地方做了备注,但是未必万全正确。
- 首先要介绍的是主体的ICP启动程序:
#include
#include
#include
#include intmain (int argc, char** argv)
{pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_in (new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_out (new pcl::PointCloud<pcl::PointXYZ>);// Fill in the CloudIn datacloud_in->width = 5;cloud_in->height = 1;cloud_in->is_dense = false;cloud_in->points.resize (cloud_in->width * cloud_in->height);for (size_t i = 0; i < cloud_in->points.size (); ++i){cloud_in->points[i].x = 1024 * rand () / (RAND_MAX + 1.0f);cloud_in->points[i].y = 1024 * rand () / (RAND_MAX + 1.0f);cloud_in->points[i].z = 1024 * rand () / (RAND_MAX + 1.0f);}std::cout << "Saved " << cloud_in->points.size () << " data points to input:"<< std::endl;for (size_t i = 0; i < cloud_in->points.size (); ++i) std::cout << " " <<cloud_in->points[i].x << " " << cloud_in->points[i].y << " " <<cloud_in->points[i].z << std::endl;*cloud_out = *cloud_in;std::cout << "size:" << cloud_out->points.size() << std::endl;for (size_t i = 0; i < cloud_in->points.size (); ++i)cloud_out->points[i].x = cloud_in->points[i].x + 0.7f;std::cout << "Transformed " << cloud_in->points.size () << " data points:"<< std::endl;for (size_t i = 0; i < cloud_out->points.size (); ++i)std::cout << " " << cloud_out->points[i].x << " " <<cloud_out->points[i].y << " " << cloud_out->points[i].z << std::endl;pcl::IterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> icp;icp.setInputCloud(cloud_in);icp.setInputTarget(cloud_out);pcl::PointCloud<pcl::PointXYZ> Final;icp.align(Final);std::cout << "has converged:" << icp.hasConverged() << " score: " <<icp.getFitnessScore() << std::endl;std::cout << icp.getFinalTransformation() << std::endl;return (0);
}
其中主要的功能就是在align()这个函数中实现的。这个函数的大体位置是
registration/include/pcl/registraion/impl/registration.hpp这里。代码接下如下
- align()函数
//函数里调用这个真正的函数
template <typename PointSource, typename PointTarget, typename Scalar> inline void
pcl::Registration<PointSource, PointTarget, Scalar>::align (PointCloudSource &output, const Matrix4& guess)
{//分配input点云的下标,函数在common/include/pcl/impl/pcl_base.hppif (!initCompute ()) return;// Resize the output dataset//如果output的下标数量和input不一样,那就成为一样的if (output.points.size () != indices_->size ())output.points.resize (indices_->size ());// Copy the headeroutput.header = input_->header;// Check if the output will be computed for all points or only a subset//这里没搞懂,感觉肯定是相等的呀?if (indices_->size () != input_->points.size ()){output.width = static_cast<uint32_t> (indices_->size ());output.height = 1;}else{output.width = static_cast<uint32_t> (input_->width);output.height = input_->height;}output.is_dense = input_->is_dense;// Copy the point data to output//这里的output就是final,也就是最后由input转化过来的点云,不是匹配的目标点云//因为没有被初试化的,所以直接拷贝点云for (size_t i = 0; i < indices_->size (); ++i)output.points[i] = input_->points[(*indices_)[i]];// Set the internal point representation of choice unless otherwise notedif (point_representation_ && !force_no_recompute_) tree_->setPointRepresentation (point_representation_);// Perform the actual transformation computationconverged_ = false;final_transformation_ = transformation_ = previous_transformation_ = Matrix4::Identity ();// Right before we estimate the transformation, we set all the point.data[3] values to 1 to aid the rigid // transformation//其实因为坐标是齐次坐标,所以第四个元素是1,前面三个元素是x,y,zfor (size_t i = 0; i < indices_->size (); ++i)output.points[i].data[3] = 1.0;//实现的icp.hpp里面,这个函数是重载函数,所以要找对//变种icp的更改基本都在这里,改动h,hpp文件,以及改动主要的computeTransformation函数,前面的都是预备工作,关系不大computeTransformation (output, guess);//这个函数仅仅是返回一个布尔值truedeinitCompute ();
}
在这个align里面的最重要的函数就是computeTransformation (output, guess)。而这个函数就在registration/include/pcl/registraion/icp.hpp这里。
- computeTransformation()函数
///
template <typename PointSource, typename PointTarget, typename Scalar> void
pcl::IterativeClosestPoint<PointSource, PointTarget, Scalar>::computeTransformation (PointCloudSource &output, const Matrix4 &guess)
{// Point cloud containing the correspondences of each point in //input_transformed是input被转换一次之后的点云PointCloudSourcePtr input_transformed (new PointCloudSource);nr_iterations_ = 0;converged_ = false;// Initialise final transformation to the guessed one//都变成单位矩阵final_transformation_ = guess;// If the guessed transformation is non identityif (guess != Matrix4::Identity ()){input_transformed->resize (input_->size ());// Apply guessed transformation prior to search for neighbours//在icp.hpp里48行transformCloud (*input_, *input_transformed, guess);}else//否则就是直接复制,其实这里还没有开始转换,因为input_transformed还是原来的input*input_transformed = *input_;transformation_ = Matrix4::Identity ();// Make blobs if necessary//我也不知道这个步骤的含义,要制造异常点吗?determineRequiredBlobData ();PCLPointCloud2::Ptr target_blob (new PCLPointCloud2);if (need_target_blob_)//转换成二进制的点云pcl::toPCLPointCloud2 (*target_, *target_blob);// Pass in the default target for the Correspondence Estimation/Rejection codecorrespondence_estimation_->setInputTarget (target_);if (correspondence_estimation_->requiresTargetNormals ())correspondence_estimation_->setTargetNormals (target_blob);// Correspondence Rejectors need a binary blobfor (size_t i = 0; i < correspondence_rejectors_.size (); ++i){registration::CorrespondenceRejector::Ptr& rej = correspondence_rejectors_[i];if (rej->requiresTargetPoints ())rej->setTargetPoints (target_blob);if (rej->requiresTargetNormals () && target_has_normals_)rej->setTargetNormals (target_blob);}//MSE是均方误差,这里是设置迭代的相关参数convergence_criteria_->setMaximumIterations (max_iterations_);convergence_criteria_->setRelativeMSE (euclidean_fitness_epsilon_);convergence_criteria_->setTranslationThreshold (transformation_epsilon_);if (transformation_rotation_epsilon_ > 0)convergence_criteria_->setRotationThreshold (transformation_rotation_epsilon_);elseconvergence_criteria_->setRotationThreshold (1.0 - transformation_epsilon_);// Repeat until convergence//该方法的主体是一个do-while循环,查找最近点,剔除错误的对应点,收敛原则都在这里//correspondence_estimation_ 、correspondence_rejectors_ 和 convergence_criteria_//这三个变量的作用分别代表查找最近点,剔除错误的对应点,收敛准则//因为是do-while循环,因此收敛准则的作用是跳出循环//transformation_estimation_是求解ICP的具体算法do{// Get blob data if neededPCLPointCloud2::Ptr input_transformed_blob;if (need_source_blob_){input_transformed_blob.reset (new PCLPointCloud2);toPCLPointCloud2 (*input_transformed, *input_transformed_blob);}// Save the previously estimated transformation//第一步迭代之前,到这个步骤之前一直是单位矩阵previous_transformation_ = transformation_;// Set the source each iteration, to ensure the dirty flag is updatedcorrespondence_estimation_->setInputSource (input_transformed);if (correspondence_estimation_->requiresSourceNormals ())correspondence_estimation_->setSourceNormals (input_transformed_blob);// Estimate correspondences//寻找迭代点云的对应点//use_reciprocal_correspondence_是相反的对应关系if (use_reciprocal_correspondence_)//determineReciprocalCorrespondences()在correspondence_estimation.hpp文件里,corr_dist_threshold_是最大距离correspondence_estimation_->determineReciprocalCorrespondences (*correspondences_, corr_dist_threshold_);elsecorrespondence_estimation_->determineCorrespondences (*correspondences_, corr_dist_threshold_);//if (correspondence_rejectors_.empty ())//把已经有对应关系的correspondences_初始化temp_correspondences,当然这是一个动态的暂时内存CorrespondencesPtr temp_correspondences (new Correspondences (*correspondences_));for (size_t i = 0; i < correspondence_rejectors_.size (); ++i){registration::CorrespondenceRejector::Ptr& rej = correspondence_rejectors_[i];PCL_DEBUG ("Applying a correspondence rejector method: %s.\n", rej->getClassName ().c_str ());if (rej->requiresSourcePoints ())rej->setSourcePoints (input_transformed_blob);if (rej->requiresSourceNormals () && source_has_normals_)rej->setSourceNormals (input_transformed_blob);rej->setInputCorrespondences (temp_correspondences);rej->getCorrespondences (*correspondences_);// Modify input for the next iterationif (i < correspondence_rejectors_.size () - 1)*temp_correspondences = *correspondences_;}size_t cnt = correspondences_->size ();// Check whether we have enough correspondencesif (static_cast<int> (cnt) < min_number_correspondences_){PCL_ERROR ("[pcl::%s::computeTransformation] Not enough correspondences found. Relax your threshold parameters.\n", getClassName ().c_str ());convergence_criteria_->setConvergenceState(pcl::registration::DefaultConvergenceCriteria<Scalar>::CONVERGENCE_CRITERIA_NO_CORRESPONDENCES);converged_ = false;break;}//在前面的寻找一致性估计后(寻找对应点后),接下来的步骤又是主要的函数步骤,transformation_estimation_是求解ICP的具体算法// Estimate the transform//查看transformation_estimation_svd.hpp中的TransformationEstimationSVD类的estimateRigidTransformation 方法//这里就是target_是最终的目标点云,在迭代过程中不变,但是input_transformed总是会不停的更新,直到和目标重合transformation_estimation_->estimateRigidTransformation (*input_transformed, *target_, *correspondences_, transformation_);// Tranform the datatransformCloud (*input_transformed, *input_transformed, transformation_);// Obtain the final transformation final_transformation_ = transformation_ * final_transformation_;++nr_iterations_;// Update the vizualization of icp convergence//if (update_visualizer_ != 0)// update_visualizer_(output, source_indices_good, *target_, target_indices_good );converged_ = static_cast<bool> ((*convergence_criteria_));}while (!converged_);// Transform the input cloud using the final transformationPCL_DEBUG ("Transformation is:\n\t%5f\t%5f\t%5f\t%5f\n\t%5f\t%5f\t%5f\t%5f\n\t%5f\t%5f\t%5f\t%5f\n\t%5f\t%5f\t%5f\t%5f\n", final_transformation_ (0, 0), final_transformation_ (0, 1), final_transformation_ (0, 2), final_transformation_ (0, 3),final_transformation_ (1, 0), final_transformation_ (1, 1), final_transformation_ (1, 2), final_transformation_ (1, 3),final_transformation_ (2, 0), final_transformation_ (2, 1), final_transformation_ (2, 2), final_transformation_ (2, 3),final_transformation_ (3, 0), final_transformation_ (3, 1), final_transformation_ (3, 2), final_transformation_ (3, 3));// Copy all the valuesoutput = *input_;// Transform the XYZ + normals//先把input_复制过去,然后在将转换后的点云叠加上去,至此,算法完成transformCloud (*input_, output, final_transformation_);
}
在computeTransformation()函数中主要用到的就是transformCloud()函数以及estimateRigidTransformation()函数还有determineCorrespondences()的函数。
transformCloud()位置
函数的位置也同样在icp.hpp里面。
determineCorrespondences()位置 registration/include/pcl/registraion/correspondence_estimation.hpp里面。estimateRigidTransformation()函数位置registration\include\pcl\registration\impl\transformation_estimation_svd.hpp。
- transformCloud()函数
template <typename PointSource, typename PointTarget, typename Scalar> void
pcl::IterativeClosestPoint<PointSource, PointTarget, Scalar>::transformCloud ( const PointCloudSource &input, PointCloudSource &output, const Matrix4 &transform)
{//这里的input和output在第一次的时候还是相同的值//但是在第二次迭代的时候才是正常的步骤Eigen::Vector4f pt (0.0f, 0.0f, 0.0f, 1.0f), pt_t;Eigen::Matrix4f tr = transform.template cast<float> ();// XYZ is ALWAYS present due to the templatization, so we only have to check for normalsif (source_has_normals_){Eigen::Vector3f nt, nt_t;Eigen::Matrix3f rot = tr.block<3, 3> (0, 0);for (size_t i = 0; i < input.size (); ++i){将input的数据填充到pt里const uint8_t* data_in = reinterpret_cast<const uint8_t*> (&input[i]);uint8_t* data_out = reinterpret_cast<uint8_t*> (&output[i]);memcpy (&pt[0], data_in + x_idx_offset_, sizeof (float));memcpy (&pt[1], data_in + y_idx_offset_, sizeof (float));memcpy (&pt[2], data_in + z_idx_offset_, sizeof (float));if (!pcl_isfinite (pt[0]) || !pcl_isfinite (pt[1]) || !pcl_isfinite (pt[2])) continue;//这里就是转换的公式,是齐次的转换pt_t = tr * pt;//把pt_t的值给data_outmemcpy (data_out + x_idx_offset_, &pt_t[0], sizeof (float));memcpy (data_out + y_idx_offset_, &pt_t[1], sizeof (float));memcpy (data_out + z_idx_offset_, &pt_t[2], sizeof (float));memcpy (&nt[0], data_in + nx_idx_offset_, sizeof (float));memcpy (&nt[1], data_in + ny_idx_offset_, sizeof (float));memcpy (&nt[2], data_in + nz_idx_offset_, sizeof (float));if (!pcl_isfinite (nt[0]) || !pcl_isfinite (nt[1]) || !pcl_isfinite (nt[2])) continue;//这里是非齐次的转换nt_t = rot * nt;//把转换后的nt_t给data_outmemcpy (data_out + nx_idx_offset_, &nt_t[0], sizeof (float));memcpy (data_out + ny_idx_offset_, &nt_t[1], sizeof (float));memcpy (data_out + nz_idx_offset_, &nt_t[2], sizeof (float));}}else{for (size_t i = 0; i < input.size (); ++i){const uint8_t* data_in = reinterpret_cast<const uint8_t*> (&input[i]);uint8_t* data_out = reinterpret_cast<uint8_t*> (&output[i]);memcpy (&pt[0], data_in + x_idx_offset_, sizeof (float));memcpy (&pt[1], data_in + y_idx_offset_, sizeof (float));memcpy (&pt[2], data_in + z_idx_offset_, sizeof (float));if (!pcl_isfinite (pt[0]) || !pcl_isfinite (pt[1]) || !pcl_isfinite (pt[2])) continue;//这里是齐次的转换pt_t = tr * pt;memcpy (data_out + x_idx_offset_, &pt_t[0], sizeof (float));memcpy (data_out + y_idx_offset_, &pt_t[1], sizeof (float));memcpy (data_out + z_idx_offset_, &pt_t[2], sizeof (float));}}}
- determineCorrespondences()函数
///
template <typename PointSource, typename PointTarget, typename Scalar> void
pcl::registration::CorrespondenceEstimation<PointSource, PointTarget, Scalar>::determineCorrespondences (pcl::Correspondences &correspondences, double max_distance)
{if (!initCompute ())return;double max_dist_sqr = max_distance * max_distance;correspondences.resize (indices_->size ());std::vector<int> index (1);std::vector<float> distance (1);pcl::Correspondence corr;unsigned int nr_valid_correspondences = 0;// Check if the template types are the same. If true, avoid a copy.// Both point types MUST be registered using the POINT_CLOUD_REGISTER_POINT_STRUCT macro!if (isSamePointType<PointSource, PointTarget> ()){// Iterate over the input set of source indicesfor (std::vector<int>::const_iterator idx = indices_->begin (); idx != indices_->end (); ++idx){tree_->nearestKSearch (input_->points[*idx], 1, index, distance);if (distance[0] > max_dist_sqr)continue;corr.index_query = *idx;corr.index_match = index[0];corr.distance = distance[0];correspondences[nr_valid_correspondences++] = corr;}}else{PointTarget pt;// Iterate over the input set of source indicesfor (std::vector<int>::const_iterator idx = indices_->begin (); idx != indices_->end (); ++idx){// Copy the source data to a target PointTarget format so we can search in the treecopyPoint (input_->points[*idx], pt);tree_->nearestKSearch (pt, 1, index, distance);if (distance[0] > max_dist_sqr)continue;corr.index_query = *idx;corr.index_match = index[0];corr.distance = distance[0];correspondences[nr_valid_correspondences++] = corr;}}correspondences.resize (nr_valid_correspondences);deinitCompute ();
}
- estimateRigidTransformation()
#ifndef PCL_REGISTRATION_TRANSFORMATION_ESTIMATION_SVD_HPP_
#define PCL_REGISTRATION_TRANSFORMATION_ESTIMATION_SVD_HPP_#include ///
template <typename PointSource, typename PointTarget, typename Scalar> inline void
pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::estimateRigidTransformation (const pcl::PointCloud<PointSource> &cloud_src,const pcl::PointCloud<PointTarget> &cloud_tgt,Matrix4 &transformation_matrix) const
{size_t nr_points = cloud_src.points.size ();if (cloud_tgt.points.size () != nr_points){PCL_ERROR ("[pcl::TransformationEstimationSVD::estimateRigidTransformation] Number or points in source (%lu) differs than target (%lu)!\n", nr_points, cloud_tgt.points.size ());return;}ConstCloudIterator<PointSource> source_it (cloud_src);ConstCloudIterator<PointTarget> target_it (cloud_tgt);estimateRigidTransformation (source_it, target_it, transformation_matrix);
}///
template <typename PointSource, typename PointTarget, typename Scalar> void
pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::estimateRigidTransformation (const pcl::PointCloud<PointSource> &cloud_src,const std::vector<int> &indices_src,const pcl::PointCloud<PointTarget> &cloud_tgt,Matrix4 &transformation_matrix) const
{if (indices_src.size () != cloud_tgt.points.size ()){PCL_ERROR ("[pcl::TransformationSVD::estimateRigidTransformation] Number or points in source (%lu) differs than target (%lu)!\n", indices_src.size (), cloud_tgt.points.size ());return;}ConstCloudIterator<PointSource> source_it (cloud_src, indices_src);ConstCloudIterator<PointTarget> target_it (cloud_tgt);estimateRigidTransformation (source_it, target_it, transformation_matrix);
}///
template <typename PointSource, typename PointTarget, typename Scalar> inline void
pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::estimateRigidTransformation (const pcl::PointCloud<PointSource> &cloud_src,const std::vector<int> &indices_src,const pcl::PointCloud<PointTarget> &cloud_tgt,const std::vector<int> &indices_tgt,Matrix4 &transformation_matrix) const
{if (indices_src.size () != indices_tgt.size ()){PCL_ERROR ("[pcl::TransformationEstimationSVD::estimateRigidTransformation] Number or points in source (%lu) differs than target (%lu)!\n", indices_src.size (), indices_tgt.size ());return;}ConstCloudIterator<PointSource> source_it (cloud_src, indices_src);ConstCloudIterator<PointTarget> target_it (cloud_tgt, indices_tgt);estimateRigidTransformation (source_it, target_it, transformation_matrix);
}/////先调用这个函数,四个参数,但是这个函数里面还会再调用一个重载函数,那个重载函数才是最关键的
template <typename PointSource, typename PointTarget, typename Scalar> void
pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::estimateRigidTransformation (const pcl::PointCloud<PointSource> &cloud_src,const pcl::PointCloud<PointTarget> &cloud_tgt,const pcl::Correspondences &correspondences,Matrix4 &transformation_matrix) const
{ConstCloudIterator<PointSource> source_it (cloud_src, correspondences, true);ConstCloudIterator<PointTarget> target_it (cloud_tgt, correspondences, false);estimateRigidTransformation (source_it, target_it, transformation_matrix);
}///
template <typename PointSource, typename PointTarget, typename Scalar> inline void
pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::estimateRigidTransformation (ConstCloudIterator<PointSource>& source_it,ConstCloudIterator<PointTarget>& target_it,Matrix4 &transformation_matrix) const
{// Convert to Eigen formatconst int npts = static_cast <int> (source_it.size ());//下面介绍了两种求解方法,//1、利用eigen库里的umeyama直接求解//2、普通的SVD分解,就是先求点云的中心点,然后再通过海瑟矩阵求得转换矩阵if (use_umeyama_){Eigen::Matrix<Scalar, 3, Eigen::Dynamic> cloud_src (3, npts);Eigen::Matrix<Scalar, 3, Eigen::Dynamic> cloud_tgt (3, npts);for (int i = 0; i < npts; ++i){cloud_src (0, i) = source_it->x;cloud_src (1, i) = source_it->y;cloud_src (2, i) = source_it->z;++source_it;cloud_tgt (0, i) = target_it->x;cloud_tgt (1, i) = target_it->y;cloud_tgt (2, i) = target_it->z;++target_it;}// Call Umeyama directly from Eigen (PCL patched version until Eigen is released)//调用下面的代码实现了SVD求解,具体方法内部实现时通过Eigen3实现的//直接通过svd分解求解转换矩阵,就这一条命令transformation_matrix = pcl::umeyama (cloud_src, cloud_tgt, false);}else{source_it.reset (); target_it.reset ();// is the source dataset transformation_matrix.setIdentity ();Eigen::Matrix<Scalar, 4, 1> centroid_src, centroid_tgt;// Estimate the centroids of source, targetcompute3DCentroid (source_it, centroid_src);compute3DCentroid (target_it, centroid_tgt);source_it.reset (); target_it.reset ();// Subtract the centroids from source, targetEigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> cloud_src_demean, cloud_tgt_demean;demeanPointCloud (source_it, centroid_src, cloud_src_demean);demeanPointCloud (target_it, centroid_tgt, cloud_tgt_demean);getTransformationFromCorrelation (cloud_src_demean, centroid_src, cloud_tgt_demean, centroid_tgt, transformation_matrix);}
}///
template <typename PointSource, typename PointTarget, typename Scalar> void
pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::getTransformationFromCorrelation (const Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> &cloud_src_demean,const Eigen::Matrix<Scalar, 4, 1> ¢roid_src,const Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> &cloud_tgt_demean,const Eigen::Matrix<Scalar, 4, 1> ¢roid_tgt,Matrix4 &transformation_matrix) const
{transformation_matrix.setIdentity ();// Assemble the correlation matrix H = source * target'Eigen::Matrix<Scalar, 3, 3> H = (cloud_src_demean * cloud_tgt_demean.transpose ()).topLeftCorner (3, 3);// Compute the Singular Value DecompositionEigen::JacobiSVD<Eigen::Matrix<Scalar, 3, 3> > svd (H, Eigen::ComputeFullU | Eigen::ComputeFullV);Eigen::Matrix<Scalar, 3, 3> u = svd.matrixU ();Eigen::Matrix<Scalar, 3, 3> v = svd.matrixV ();// Compute R = V * U'if (u.determinant () * v.determinant () < 0){for (int x = 0; x < 3; ++x)v (x, 2) *= -1;}Eigen::Matrix<Scalar, 3, 3> R = v * u.transpose ();// Return the correct transformationtransformation_matrix.topLeftCorner (3, 3) = R;const Eigen::Matrix<Scalar, 3, 1> Rc (R * centroid_src.head (3));transformation_matrix.block (0, 3, 3, 1) = centroid_tgt.head (3) - Rc;
}//#define PCL_INSTANTIATE_TransformationEstimationSVD(T,U) template class PCL_EXPORTS pcl::registration::TransformationEstimationSVD; #endif /* PCL_REGISTRATION_TRANSFORMATION_ESTIMATION_SVD_HPP_ */
当初的代码注释,但是也是依照个人理解初次写,如果有问题,还请见谅!
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
