【高等数学】导数与微分1
本文还有第二部分,包含隐函数及由参数方程所确定的函数的导数、函数的微分
文章目录
- 导数的概念
- 一、导数的概念
- 二、单侧导数
- 三、导数的几何意义
- 四、导数的应用
- 五、导数的性质
- 函数求导法则
- 一、基本求导公式
- 二、函数和、差、积、商的求导法则
- 三、反函数的求导法则
- 四、复合函数求导法则
- 五、分段函数求导法则
- 高阶导数
- 一、高阶导数的定义
- 二、高阶导数的求法
- 1. 归纳法
- 2. 分解法
- 3. 莱布尼茨法则
导数的概念
一、导数的概念
设函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0的某个邻域内有定义,当自变量 x x x在 x 0 x_0 x0处取得增量 Δ x \Delta x Δx(点 x 0 + Δ x x_0+\Delta x x0+Δx仍在该邻域内)时,相应的因变量取得增量 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=f(x_0+\Delta x)-f(x_0) Δy=f(x0+Δx)−f(x0);如果 Δ y \Delta y Δy与 Δ x \Delta x Δx之比当 Δ x → 0 \Delta x\to0 Δx→0时极限存在,那么称函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处可导,并称这个极限为函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处的导数,记为 f ′ ( x 0 ) f'(x_0) f′(x0),即
f ′ ( x 0 ) = lim Δ x → 0 Δ y Δ x = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'(x_0)=\lim_{\Delta x\to0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\to0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} f′(x0)=Δx→0limΔxΔy=Δx→0limΔxf(x0+Δx)−f(x0)
也可记作 y ′ ∣ x = x 0 y'\Big|_{x=x_0} y′∣ ∣x=x0, d y d x ∣ x = x 0 \frac{dy}{dx}\Big|_{x=x_0} dxdy∣ ∣x=x0或 d f ( x ) d x ∣ x = x 0 \frac{df(x)}{dx}\Big|_{x=x_0} dxdf(x)∣ ∣x=x0
导数的定义式有两种不同的形式
-
f ′ ( x 0 ) = lim h → 0 f ( x 0 + h ) − f ( x 0 ) h f'(x_0)=\lim_{h\to0}\frac{f(x_0+h)-f(x_0)}{h} f′(x0)=limh→0hf(x0+h)−f(x0)
-
f ′ ( x 0 ) = lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 f'(x_0)=\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0} f′(x0)=limx→x0x−x0f(x)−f(x0)
例1:求函数 f ( x ) = x n ( x ∈ N + ) f(x)=x^n(x\in N_+) f(x)=xn(x∈N+)的导数
当n=1时
f ′ ( x ) = lim n → 0 f ( x + h ) − f ( x ) h = lim h → 0 ( x + h ) − x h = 1 f'(x)=\lim_{n\to0}\frac{f(x+h)-f(x)}{h}=\lim_{h\to0}\frac{(x+h)-x}h=1 f′(x)=n→0limhf(x+h)−f(x)=h→0limh(x+h)−x=1
当n>1时
f ′ ( x ) = lim n → 0 f ( x + h ) − f ( x ) h = lim h → 0 ( x + h ) n − x n h = lim h → 0 C n 0 x n + C n 2 x n − 1 h + ⋯ + C − n n h n − x n h = lim h → 0 C n 1 x n − 1 + C n 2 x n − 2 h + ⋯ + C n n h n − 1 = n x n − 1 \begin{aligned}f'(x)&=\lim_{n\to0}\frac{f(x+h)-f(x)}{h}\\&=\lim_{h\to0}\frac{(x+h)^n-x^n}{h}\\&=\lim_{h\to0}\frac{C_n^0x^n+C_n^2x^{n-1}h+\cdots+C-n^nh^n-x^n}{h}\\&=\lim_{h\to0}C^1_nx^{n-1}+C^2_nx^{n-2}h+\cdots+C^n_nh^{n-1}\\&=nx^{n-1}\end{aligned} f′(x)=n→0limhf(x+h)−f(x)=h→0limh(x+h)n−xn=h→0limhCn0xn+Cn2xn−1h+⋯+C−nnhn−xn=h→0limCn1xn−1+Cn2xn−2h+⋯+Cnnhn−1=nxn−1
例2:求幂函数 f ( x ) = x μ ( μ ∈ R ) f(x)=x^\mu(\mu\in R) f(x)=xμ(μ∈R)的导数
f ′ ( x ) = lim h → 0 f ( x + h ) + − f ( x ) h = lim h → 0 ( x + h ) μ − x μ h = lim h → 0 x μ [ ( 1 + h x ) μ − 1 ] h = x μ lim h → 0 μ h x h = μ x μ − 1 \begin{aligned}f'(x)&=\lim_{h\to0}\frac{f(x+h)+-f(x)}{h}\\&=\lim_{h\to0}\frac{(x+h)^\mu-x^\mu}{h}\\&=\lim_{h\to0}\frac{x^\mu[(1+\frac hx)^\mu-1]}h\\&=x^\mu\lim_{h\to0}\frac{\mu\frac hx}h=\mu x^{\mu-1}\end{aligned} f′(x)=h→0limhf(x+h)+−f(x)=h→0limh(x+h)μ−xμ=h→0limhxμ[(1+xh)μ−1]=xμh→0limhμxh=μxμ−1
例3,求函数 f ( x ) = s i n x f(x)=sinx f(x)=sinx的导数
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h = lim h → 0 sin ( x + h ) − sin x h = lim h → 0 sin ( x + h 2 + h 2 ) − sin ( x + h 2 − h 2 ) h = lim h → 0 sin ( x + h 2 ) cos h 2 + cos ( x + h 2 ) sin h 2 − sin ( x + h 2 ) cos h 2 + cos ( x + h 2 ) sin h 2 h = lim h → 0 2 cos ( x + h 2 ) sin h 2 h = lim h → 0 cos ( x + h 2 ) = cos x \begin{aligned}f'(x)=&\lim_{h\to0}\frac{f(x+h)-f(x)}h\\&=\lim_{h\to0}\frac{\sin(x+h)-\sin x}h\\&=\lim_{h\to0}\frac{\sin(x+\frac h2+\frac h2)-\sin(x+\frac h2-\frac h2)}h\\&=\lim_{h\to0}\frac{\sin(x+\frac h2)\cos \frac h2+\cos(x+\frac h2)\sin\frac h2-\sin(x+\frac h2)\cos \frac h2+\cos(x+\frac h2)\sin\frac h2}{h}\\&=\lim_{h\to0}2\frac{\cos(x+\frac h2)\sin \frac h2}h\\&=\lim_{h\to0}\cos(x+\frac h2)\\&=\cos x\end{aligned} f′(x)=h→0limhf(x+h)−f(x)=h→0limhsin(x+h)−sinx=h→0limhsin(x+2h+2h)−sin(x+2h−2h)=h→0limhsin(x+2h)cos2h+cos(x+2h)sin2h−sin(x+2h)cos2h+cos(x+2h)sin2h=h→0lim2hcos(x+2h)sin2h=h→0limcos(x+2h)=cosx
例4:求函数 f ( x ) = a x ( a > 0 , a ≠ 1 ) f(x)=a^x(a>0,a\ne1) f(x)=ax(a>0,a=1)的导数
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h = lim h → 0 a x + h − a x h = lim h → 0 a x ( a h − 1 ) h = lim h → 0 h ln a h = a x ln a \begin{aligned}f'(x)&=\lim_{h\to0}\frac{f(x+h)-f(x)}h\\&=\lim_{h\to0}\frac{a^{x+h}-a^x}h\\&=\lim_{h\to0}\frac{a^x(a^h-1)}h\\&=\lim_{h\to0}\frac{h\ln a}h\\&=a^x\ln a\end{aligned} f′(x)=h→0limhf(x+h)−f(x)=h→0limhax+h−ax=h→0limhax(ah−1)=h→0limhhlna=axlna
二、单侧导数
左导数: f − ′ ( x 0 ) = lim h → 0 − f ( x 0 + h ) − f ( x 0 ) h f'_-(x_0)=\lim_{h\to0^-}\frac{f(x_0+h)-f(x_0)}h f−′(x0)=limh→0−hf(x0+h)−f(x0)
右导数: f + ′ ( x 0 ) = lim h → 0 + f ( x 0 + h ) − f ( x 0 ) h f'_+(x_0)=\lim_{h\to0^+}\frac{f(x_0+h)-f(x_0)}h f+′(x0)=limh→0+hf(x0+h)−f(x0)
左导数和右导数统称为单侧导数
函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0处可导的充分必要条件是左导数 f − ′ ( x 0 ) f'_-(x_0) f−′(x0)和右导数 f + ′ ( x 0 ) f'_+(x_0) f+′(x0)都存在且相等
注意: lim x → x 0 − f ′ ( x ) ≠ f − ′ ( x 0 ) \lim_{x\to x_0^-}f'(x)\ne f'_-(x_0) limx→x0−f′(x)=f−′(x0)。前者是导函数的左极限,后者是左导数
总结来说,左右导数,是函数左右段的实际导数值,若左右导数相等,则函数在该点可导,该导数也是导函数在该点的函数值;而导函数的左右极限,是导函数作为独立函数时求得的函数极限,与原函数联系不大。那么导函数作为一个独立的函数,如果在该点的左右极限相等且等于实际函数值,那么导函数在该点连续。
作者:赵一
链接:https://www.zhihu.com/question/42221580/answer/261181098
个人理解, lim x → x 0 f ′ ( x ) , lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 \lim_{x\to x_0}f'(x),\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0} limx→x0f′(x),limx→x0x−x0f(x)−f(x0)是两个函数的极限,只是当二者都存在的时候,二者相等。见例5
例5:函数 f ( x ) = { x 2 sin 1 x , x ≠ 0 0 , x = 0 f(x)=\left\{\begin{aligned}&x^2\sin\frac1x,&x\ne0\\&0,&x=0\end{aligned}\right. f(x)=⎩ ⎨ ⎧x2sinx1,0,x=0x=0,求 f ( x ) f(x) f(x)在 x = 0 x=0 x=0处的导数,并说明 f ( x ) f(x) f(x)的导函数是否连续
左导数: f − ′ ( 0 ) = lim x → 0 − f ( x ) − f ( 0 ) x = lim x → 0 − x sin 1 x = 0 f'_-(0)=\lim_{x\to 0^-}\frac{f(x)-f(0)}x=\lim_{x\to0^-}x\sin\frac1x=0 f−′(0)=limx→0−xf(x)−f(0)=limx→0−xsinx1=0
右导数: f + ′ ( 0 ) = lim x → 0 + f ( x ) − f ( 0 ) x = lim x → 0 + x sin 1 x = 0 f'_+(0)=\lim_{x\to 0^+}\frac{f(x)-f(0)}x=\lim_{x\to0^+}x\sin\frac1x=0 f+′(0)=limx→0+xf(x)−f(0)=limx→0+xsinx1=0
∵ f − ′ ( 0 ) = f + ′ ( 0 ) = 0 \because f'_-(0)=f'_+(0)=0 ∵f−′(0)=f+′(0)=0, ∴ f ′ ( 0 ) = 0 \therefore f'(0)=0 ∴f′(0)=0,即 f ( x ) f(x) f(x)在 x = 0 x=0 x=0处的导数为 0 0 0,再求f(x)的导函数
当 x ≠ 0 x\ne0 x=0时
f ′ ( x ) = 2 x sin 1 x − cos 1 x f'(x)=2x\sin\frac1x-\cos\frac1x f′(x)=2xsinx1−cosx1
lim x → 0 − f ′ ( x ) = lim x → 0 − 2 x sin 1 x − cos 1 x \lim_{x\to0^-}f'(x)=\lim_{x\to0^-}2x\sin\frac1x-\cos\frac1x x→0−limf′(x)=x→0−lim2xsinx1−cosx1
极限不存在,同理极限 lim x → 0 + f ′ ( x ) \lim_{x\to0^+}f'(x) limx→0+f′(x)也不存在,故 f ( x ) f(x) f(x)的导函数在 x = 0 x=0 x=0处不连续
函数可导性与连续性的关系:可导必连续,连续不一定可导
例6:设 f ( x ) f(x) f(x)在 x = a x=a x=a的某个邻域内有定义,则 f ( x ) f(x) f(x)在 x = a x=a x=a处可导的一个充分条件是
A: lim h → + ∞ h [ f ( a + 1 h ) − f ( a ) ] \lim_{h\to+\infty}h[f(a+\frac1h)-f(a)] limh→+∞h[f(a+h1)−f(a)]存在
lim h → + ∞ h [ f ( a + 1 h ) − f ( a ) ] = lim h → + ∞ f ( a + 1 h ) − f ( a ) 1 h = f + ( a ) \lim_{h\to+\infty}h[f(a+\frac1h)-f(a)]=\lim_{h\to+\infty}\frac{f(a+\frac1h)-f(a)}{\frac1h}=f_+(a) h→+∞limh[f(a+h1)−f(a)]=h→+∞limh1f(a+h1)−f(a)=f+(a)
B: lim h → 0 f ( a + h 2 ) − f ( a ) h 2 \lim_{h\to0}\frac{f(a+h^2)-f(a)}{h^2} limh→0h2f(a+h2)−f(a)存在
lim h → 0 f ( a + h 2 ) − f ( a ) h 2 = f + ( a ) \lim_{h\to0}\frac{f(a+h^2)-f(a)}{h^2}=f_+(a) h→0limh2f(a+h2)−f(a)=f+(a)
C: lim h → 0 f ( a + h ) − f ( a − h ) 2 h \lim_{h\to 0}\frac{f(a+h)-f(a-h)}{2h} limh→02hf(a+h)−f(a−h)存在
lim h → 0 f ( a + h ) − f ( a − h ) 2 h = lim h → 0 f ( a + h ) − f ( a ) 2 h + lim h → 0 f ( a ) − f ( a − h ) 2 h = f ′ ( a ) \lim_{h\to 0}\frac{f(a+h)-f(a-h)}{2h}=\lim_{h\to 0}\frac{f(a+h)-f(a)}{2h}+\lim_{h\to 0}\frac{f(a)-f(a-h)}{2h}=f'(a) h→0lim2hf(a+h)−f(a−h)=h→0lim2hf(a+h)−f(a)+h→0lim2hf(a)−f(a−h)=f′(a)
这种想法是错误的,只能说明左导数等于右导数(反例 f ( x ) = { 1 , x ≠ a 0 , x ≠ a f(x)=\begin{cases}1,x\ne a\\0,x\ne a\end{cases} f(x)={1,x=a0,x=a),不能说明可导,甚至不能说明连续,因此上式 ≠ f ′ ( a ) \ne f'(a) =f′(a)
D: lim h → 0 f ( a ) − f ( a − h ) h \lim_{h\to0}\frac{f(a)-f(a-h)}h limh→0hf(a)−f(a−h)存在
lim h → 0 f ( a ) − f ( a − h ) h = lim h → 0 f ( a − h ) − f ( a ) − h = f ′ ( a ) \lim_{h\to0}\frac{f(a)-f(a-h)}h=\lim_{h\to0}\frac{f(a-h)-f(a)}{-h}=f'(a) h→0limhf(a)−f(a−h)=h→0lim−hf(a−h)−f(a)=f′(a)
当选。其实还要注意该题的思路应该是证明:条件 ⇒ lim h → 0 f ( a + h ) − f ( a ) h ⇒ f ′ ( a ) \Rightarrow \lim_{h\to0}\frac{f(a+h)-f(a)}{h}\Rightarrow f'(a) ⇒limh→0hf(a+h)−f(a)⇒f′(a)
三、导数的几何意义
函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处的导数 f ′ ( x 0 ) f'(x_0) f′(x0)在几何上表示曲线 y = f ( x ) y=f(x) y=f(x)在点 M ( x 0 , f ( x 0 ) ) M(x_0,f(x_0)) M(x0,f(x0))处的切线斜率,即 f ′ ( x 0 ) = tan α f'(x_0)=\tan\alpha f′(x0)=tanα,其中 α \alpha α是切线的倾角
四、导数的应用
-
切线方程
曲线 y = f ( x ) y=f(x) y=f(x)在点 M ( x 0 , y 0 ) M(x_0,y_0) M(x0,y0)处的切线方程为: y − y 0 = f ′ ( x 0 ) ( x − x 0 ) y-y_0=f'(x_0)(x-x_0) y−y0=f′(x0)(x−x0)
-
法线方程
曲线 y = f ( x ) y=f(x) y=f(x)在点 M ( x 0 , y 0 ) M(x_0,y_0) M(x0,y0)处的切线方程为: y − y 0 = − 1 f ′ ( x 0 ) ( x − x 0 ) y-y_0=-\frac1{f'(x_0)}(x-x_0) y−y0=−f′(x0)1(x−x0)
例7:求曲线 y = x 3 2 y=x^{\frac32} y=x23的通过点 ( 0 , − 4 ) (0,-4) (0,−4)的切线方程
设切点为 ( x 0 , y 0 ) (x_0,y_0) (x0,y0),则切线斜率为
k = y ′ ∣ x = x 0 = 3 2 x 1 2 ∣ x = x 0 = 3 2 x 0 k=y'\Big|_{x=x_0}=\frac32x^{\frac12}\Big|_{x=x_0}=\frac32\sqrt x_0 k=y′∣ ∣x=x0=23x21∣ ∣x=x0=23x0
故切线方程为
y − x 0 3 2 = 3 2 x 0 1 2 ( x − x 0 ) y-x_0^{\frac32}=\frac32x_0^{\frac12}(x-x_0) y−x023=23x021(x−x0)
又 ∵ \because ∵切点过点 ( 0 , − 4 ) (0,-4) (0,−4),代入上式,解得 x 0 = 4 x_0=4 x0=4,故切点方程为 3 x − y − 4 = 0 3x-y-4=0 3x−y−4=0
五、导数的性质
-
连续的奇函数的导函数为偶函数
-
连续的偶函数的导函数为奇函数
-
连续的周期函数的导函数为周期函数
函数求导法则
一、基本求导公式
( C ) ′ = 0 ( x μ ) ′ = μ x μ − 1 ( sin x ) ′ = cos x ( cos x ) ′ = − sin x ( tan x ) ′ = sec 2 x ( cot x ) ′ = − c s c 2 x ( sec x ) ′ = sec x tan x ( csc x ) ′ = − csc x cot x ( a x ) ′ = a x ln a ( a > 0 , a ≠ 1 ) ( e x ) ′ = e x ( log a x ) ′ = 1 x ln a ( ln x ) ′ = 1 x ( arcsin x ) ′ = 1 1 − x 2 ( arccos x ) ′ = − 1 1 − x 2 ( arctan x ) ′ = 1 1 + x 2 ( arccot x ) ′ = − 1 1 + x 2 \begin{aligned} (C)'&=0\\ (x^\mu)'&=\mu x^{\mu-1}\\ (\sin x)'&=\cos x\\ (\cos x)'&=-\sin x\\ (\tan x)'&=\sec^2x\\ (\cot x)'&=-csc^2x\\ (\sec x)'&=\sec x\tan x\\ (\csc x)'&=-\csc x\cot x\\ (a^x)'&=a^x\ln a(a>0,a\ne1)\\ (e^x)'&=e^x\\ (\log_ax)'&=\frac1{x\ln a}\\ (\ln x)'&=\frac1x\\ (\arcsin x)'&=\frac1{\sqrt{1-x^2}}\\ (\arccos x)'&=-\frac1{\sqrt{1-x^2}}\\ (\arctan x)'&=\frac1{1+x^2}\\ (\text{arccot} x)'&=-\frac1{1+x^2} \end{aligned} (C)′(xμ)′(sinx)′(cosx)′(tanx)′(cotx)′(secx)′(cscx)′(ax)′(ex)′(logax)′(lnx)′(arcsinx)′(arccosx)′(arctanx)′(arccotx)′=0=μxμ−1=cosx=−sinx=sec2x=−csc2x=secxtanx=−cscxcotx=axlna(a>0,a=1)=ex=xlna1=x1=1−x21=−1−x21=1+x21=−1+x21
二、函数和、差、积、商的求导法则
[ u ( x ) ± v ( x ) ] ′ = u ′ ( x ) ± v ′ ( x ) [u(x)\pm v(x)]'=u'(x)\pm v'(x) [u(x)±v(x)]′=u′(x)±v′(x)
[ u ( x ) v ( x ) ] ′ = u ′ ( x ) v ( x ) + u ( x ) v ′ ( x ) [u(x)v(x)]'=u'(x)v(x)+u(x)v'(x) [u(x)v(x)]′=u′(x)v(x)+u(x)v′(x)
[ u ( x ) v ( x ) ] ′ = u ′ ( x ) v ( x ) − u ( x ) v ′ ( x ) v 2 ( x ) ( v ( x ) ≠ 0 ) [\frac{u(x)}{v(x)}]'=\frac{u'(x)v(x)-u(x)v'(x)}{v^2(x)}(v(x)\ne0) [v(x)u(x)]′=v2(x)u′(x)v(x)−u(x)v′(x)(v(x)=0)
证明: [ u ( x ) v ( x ) ] ′ = u ′ ( x ) v ( x ) + u ( x ) v ′ ( x ) [u(x)v(x)]'=u'(x)v(x)+u(x)v'(x) [u(x)v(x)]′=u′(x)v(x)+u(x)v′(x)
( u ( x ) v ( x ) ) ′ = lim Δ x → 0 u ( x + Δ x ) v ( x + Δ x ) − u ( x ) v ( x ) Δ x = lim Δ x → 0 u ( x + Δ x ) v ( x + Δ x ) − v ( x + Δ x ) u ( x ) + v ( x + Δ x ) u ( x ) − u ( x ) v ( x ) Δ x = lim Δ x → 0 v ( x + Δ x ) u ( x + Δ x ) − u ( x ) Δ x + lim Δ x → 0 u ( x ) v ( x + Δ x ) − v ( x ) Δ x = u ′ ( x ) lim Δ x → 0 v ( x + Δ x ) + u ( x ) v ′ ( x ) [ = u ′ ( x ) v ( x ) + v ′ ( x ) u ( x ) ] ( ) \begin{aligned}(u(x)v(x))'&=\lim_{\Delta x\to0}\frac{u(x+\Delta x)v(x+\Delta x)-u(x)v(x)}{\Delta x}\\&=\lim_{\Delta x\to0}\frac{u(x+\Delta x)v(x+\Delta x)-v(x+\Delta x)u(x)+v(x+\Delta x)u(x)-u(x)v(x)}{\Delta x}\\&=\lim_{\Delta x\to0}v(x+\Delta x)\frac{u(x+\Delta x)-u(x)}{\Delta x}+\lim_{\Delta x\to0}u(x)\frac{v(x+\Delta x)-v(x)}{\Delta x}\\&=u'(x)\lim_{\Delta x\to0}v(x+\Delta x)+u(x)v'(x)[\\&=u'(x)v(x)+v'(x)u(x)\end{aligned}]() (u(x)v(x))′=Δx→0limΔxu(x+Δx)v(x+Δx)−u(x)v(x)=Δx→0limΔxu(x+Δx)v(x+Δx)−v(x+Δx)u(x)+v(x+Δx)u(x)−u(x)v(x)=Δx→0limv(x+Δx)Δxu(x+Δx)−u(x)+Δx→0limu(x)Δxv(x+Δx)−v(x)=u′(x)Δx→0limv(x+Δx)+u(x)v′(x)[=u′(x)v(x)+v′(x)u(x)]()
lim Δ x → 0 v ( x + Δ x ) = v ( x ) \lim_{\Delta x\to0}v(x+\Delta x)=v(x) limΔx→0v(x+Δx)=v(x),因为可导必连续得到的。作为一个因式可以直接换,如果是加减项就不可以
证明: [ u ( x ) v ( x ) ] ′ = u ′ ( x ) v ( x ) − u ( x ) v ′ ( x ) v 2 ( x ) ( v ( x ) ≠ 0 ) [\frac{u(x)}{v(x)}]'=\frac{u'(x)v(x)-u(x)v'(x)}{v^2(x)}(v(x)\ne0) [v(x)u(x)]′=v2(x)u′(x)v(x)−u(x)v′(x)(v(x)=0)
( u ( x ) v ( x ) ) ′ = lim Δ x → 0 u ( x + Δ x ) v ( x + Δ x ) − u ( x ) v ( x ) Δ x = lim Δ x → 0 u ( x + Δ x ) v ( x ) − v ( x + Δ x ) u ( x ) Δ x ⋅ v ( x ) v ( x + Δ x ) = lim Δ x → 0 u ( x + Δ x ) v ( x ) − u ( x ) v ( x ) + u ( x ) v ( x ) − v ( x + Δ x ) u ( x ) Δ x ⋅ v ( x ) v ( x + Δ x ) = lim Δ x → 0 v ( x ) u ( x + Δ x ) − u ( x ) Δ x − u ( x ) v ( x + Δ x ) − v ( x ) Δ x Δ x ⋅ v ( x ) v ( x + Δ x ) = u ′ ( x ) v ( x ) − u ( x ) v ′ ( x ) v 2 ( x ) \begin{aligned}(\frac{u(x)}{v(x)})'&=\lim_{\Delta x\to0}\frac{\frac{u(x+\Delta x)}{v(x+\Delta x)}-\frac{u(x)}{v(x)}}{\Delta x}\\&=\lim_{\Delta x\to0}\frac{u(x+\Delta x)v(x)-v(x+\Delta x)u(x)}{\Delta x\cdot v(x)v(x+\Delta x)}\\&=\lim_{\Delta x\to0}\frac{u(x+\Delta x)v(x)-u(x)v(x)+u(x)v(x)-v(x+\Delta x)u(x)}{\Delta x\cdot v(x)v(x+\Delta x)}\\&=\lim_{\Delta x\to0}\frac{v(x)\frac{u(x+\Delta x)-u(x)}{\Delta x}-u(x)\frac{v(x+\Delta x)-v(x)}{\Delta x}}{\Delta x\cdot v(x)v(x+\Delta x)}\\&=\frac{u'(x)v(x)-u(x)v'(x)}{v^2(x)}\end{aligned} (v(x)u(x))′=Δx→0limΔxv(x+Δx)u(x+Δx)−v(x)u(x)=Δx→0limΔx⋅v(x)v(x+Δx)u(x+Δx)v(x)−v(x+Δx)u(x)=Δx→0limΔx⋅v(x)v(x+Δx)u(x+Δx)v(x)−u(x)v(x)+u(x)v(x)−v(x+Δx)u(x)=Δx→0limΔx⋅v(x)v(x+Δx)v(x)Δxu(x+Δx)−u(x)−u(x)Δxv(x+Δx)−v(x)=v2(x)u′(x)v(x)−u(x)v′(x)
主要思路在加减项中,因为 f ( x + Δ x ) f(x+\Delta x) f(x+Δx)和 f ( x ) f(x) f(x)之间不能直接运算,所以要尽量凑成导数形式
三、反函数的求导法则
如果函数 x = f ( y ) x=f(y) x=f(y)在区间 I y I_y Iy内单调、可导且 f ′ ( y ) ≠ 0 f'(y)\ne0 f′(y)=0,那么它的反函数 y = f − 1 ( x ) y=f^{-1}(x) y=f−1(x)在区间I_x= { x ∣ x = f ( y ) , y ∈ I y } \{x|x=f(y),y\in I_y\} {x∣x=f(y),y∈Iy}内也可导,且
[ f − 1 ( x ) ′ = 1 f ′ ( y ) ] 或 d y d x = 1 d x d y [f^{-1}(x)'=\frac1{f'(y)}]或\frac{dy}{dx}=\frac1{\frac{dx}{dy}} [f−1(x)′=f′(y)1]或dxdy=dydx1
简单来说:反函数的导数等于直接函数导数的倒数
例1:证明 y ∈ ( − π 2 , π 2 ) y\in(-\frac\pi2,\frac\pi2) y∈(−2π,2π)时,函数 y = arctan x y=\arctan x y=arctanx的导数为 1 1 + x 2 \frac1{1+x^2} 1+x21
y ∈ ( − π 2 , π 2 ) y\in(-\frac\pi2,\frac\pi2) y∈(−2π,2π)时, y = arctan x y=\arctan x y=arctanx的反函数为 x = tan y x=\tan y x=tany,在 ( − π 2 , π 2 ) (-\frac\pi2,\frac\pi2) (−2π,2π)内单调可导
( arctan x ) ′ = 1 ( tan y ) ′ = 1 sec 2 y = 1 1 + tan 2 y = 1 1 + x 2 (\arctan x)'=\frac1{(\tan y)}'=\frac1{\sec^2y}=\frac1{1+\tan^2y}=\frac1{1+x^2} (arctanx)′=(tany)1′=sec2y1=1+tan2y1=1+x21
例2:已知函数 x = x ( y ) x=x(y) x=x(y)由 y = e x + 2 x + sin x y=e^x+2x+\sin x y=ex+2x+sinx所确定,求 d x d y \frac{dx}{dy} dydx
d x d y = 1 d y d x = 1 e x + 2 x + sin x ) ′ = 1 e x + 2 + cos x \frac {dx}{dy}=\frac1{\frac {dy}{dx}}=\frac1{e^x+2x+\sin x)'}=\frac1{e^x+2+\cos x} dydx=dxdy1=ex+2x+sinx)′1=ex+2+cosx1
四、复合函数求导法则
如果 u = g ( x ) u=g(x) u=g(x)在点 x x x可导,而 y = f ( u ) y=f(u) y=f(u)在 u = g ( x ) u=g(x) u=g(x)可导,那么复合函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)]在点 x x x可导,且导数为
d y d x = f ′ ( u ) g ′ ( x ) 或 d y d x = d y d u d u d x \frac{dy}{dx}=f'(u)g'(x)或\frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx} dxdy=f′(u)g′(x)或dxdy=dudydxdu
五、分段函数求导法则
方法:在分段点处用导数的定义求分段点的导数
例3:设函数 y = f ( x ) = { x 3 , x ≥ 0 e x 2 − 1 , x < 0 y=f(x)=\begin{cases}x^3,x\geq0\\e^{x^2}-1,x<0\end{cases} y=f(x)={x3,x≥0ex2−1,x<0,试确定函数在点 x = 0 x=0 x=0处的导数是否存在,若存在,求 f ′ ( 0 ) f'(0) f′(0)
f + ′ ( 0 ) = lim x → 0 + f ( x ) − f ( 0 ) x − 0 = lim x → 0 + x 3 − 0 x − 0 = 0 f'_+(0)=\lim_{x\to 0^+}\frac{f(x)-f(0)}{x-0}=\lim_{x\to0^+}\frac{x^3-0}{x-0}=0 f+′(0)=x→0+limx−0f(x)−f(0)=x→0+limx−0x3−0=0
f − ′ ( 0 ) = lim x → 0 − f ( x ) − f ( 0 ) x − 0 = lim x → 0 − e x 2 − 1 − 0 x − 0 = lim x → 0 − x 2 x = 0 f'_-(0)=\lim_{x\to 0^-}\frac{f(x)-f(0)}{x-0}=\lim_{x\to0^-}\frac{e^{x^2}-1-0}{x-0}=\lim_{x\to0^-}\frac{x^2}x=0 f−′(0)=x→0−limx−0f(x)−f(0)=x→0−limx−0ex2−1−0=x→0−limxx2=0
∵ f + ′ ( 0 ) = f − ′ ( 0 ) = 0 \because f'_+(0)=f'_-(0)=0 ∵f+′(0)=f−′(0)=0,故 f ′ ( 0 ) = 0 f'(0)=0 f′(0)=0
高阶导数
一、高阶导数的定义
一般地,函数 y = f ( x ) y=f(x) y=f(x)的导数 y ′ = f ′ ( x ) y'=f'(x) y′=f′(x)仍然是 x x x的函数,我们把 y ′ = f ′ ( x ) y'=f'(x) y′=f′(x)的导数叫做 y = f ( x ) y=f(x) y=f(x)的二阶导数,记作 y ′ ′ y'' y′′或 d 2 y d x 2 \frac{d^2y}{dx^2} dx2d2y,即
y ′ ′ = ( y ′ ) ′ 或 d 2 y d x 2 = d d x ( d y d x ) y''=(y')'或\frac{d^2y}{dx^2}=\frac d{dx}(\frac{dy}{dx}) y′′=(y′)′或dx2d2y=dxd(dxdy)
类似地,二阶导的导数叫做三阶导数,三阶导的导数叫做四阶导数,……,一般地, ( n − 1 ) (n-1) (n−1)阶导的导数叫做 n n n阶导数,分别记作
y ′ ′ ′ , y ( 4 ) , ⋯ , y ( n ) 或 d 3 y d x 3 , d 4 y d x 4 , ⋯ , d n y d x n y''',y^{(4)},\cdots,y^{(n)}或\frac{d^3y}{dx^3},\frac{d^4y}{dx^4},\cdots,\frac{d^ny}{dx^n} y′′′,y(4),⋯,y(n)或dx3d3y,dx4d4y,⋯,dxndny
函数 y = f ( x ) y=f(x) y=f(x)具有 n n n阶导数,也说成函数 f ( x ) f(x) f(x)为 n n n阶可导,二阶及二阶以上的导数统称为高阶导数
二、高阶导数的求法
1. 归纳法
对需要求高阶导数的函数公式按照求导法则多次接连的求导数,在逐次求导的过程中,找到它的某种规律,从而写出高阶导
( e x ) ( n ) = e x ( sin x ) ( n ) = sin ( x + n π 2 ) ( cos x ) ( n ) = cos ( x + n π 2 ) y ( n ) = ( − 1 ) n − 1 ⋅ ( n − 1 ) ! ( 1 + x ) n \begin{aligned} (e^x)^{(n)}&=e^x\\ (\sin x)^{(n)}&=\sin(x+n\frac\pi2)\\ (\cos x)^{(n)}&=\cos(x+n\frac\pi2)\\ y^{(n)}&=\frac{(-1)^{n-1}\cdot(n-1)!}{(1+x)^n} \end{aligned} (ex)(n)(sinx)(n)(cosx)(n)y(n)=ex=sin(x+n2π)=cos(x+n2π)=(1+x)n(−1)n−1⋅(n−1)!
2. 分解法
将多项式进行有理式的分解后,之后再去应用归纳法
例1:求函数 1 2 x 2 − 3 x − 2 \frac1{2x^2-3x-2} 2x2−3x−21的 n n n阶导数
1 2 x 2 − 3 x − 2 = 1 ( x − 2 ) ( 2 x + 1 ) = A x − 2 + B 2 x + 1 = x ( 2 A + B ) + ( A − 2 B ) ( x − 2 ) ( 2 x + 1 ) \begin{aligned}\frac1{2x^2-3x-2}&=\frac1{(x-2)(2x+1)}\\&=\frac A{x-2}+\frac B{2x+1}\\&=\frac{x(2A+B)+(A-2B)}{(x-2)(2x+1)}\end{aligned} 2x2−3x−21=(x−2)(2x+1)1=x−2A+2x+1B=(x−2)(2x+1)x(2A+B)+(A−2B)
{ 2 A + B = 0 A − 2 B = 0 \begin{cases}2A+B=0\\A-2B=0\end{cases} {2A+B=0A−2B=0
解得
{ A = 1 5 B = − 2 5 \begin{cases}A=\frac15\\B=-\frac25\end{cases} {A=51B=−52
因此
1 2 x 2 − 3 x − 2 = 1 5 1 x − 2 − 2 5 1 2 x + 1 ( 1 x − 2 ) ( n ) = ( − 1 ) n n ! ( x − 1 ) n + 1 ( 1 2 x + 1 ) ( n ) = ( − 1 ) n n ! ⋅ 2 n ( 2 x + 1 ) n + 1 ( 1 2 x 2 − 3 x − 2 ) ( n ) = ( − 1 ) n ⋅ n ! 5 [ 1 ( x − 2 ) n + 1 − 2 n + 1 ( 2 x + 1 ) n + 1 ] \begin{aligned} \frac1{2x^2-3x-2}&=\frac15\frac1{x-2}-\frac25\frac1{2x+1}\\ (\frac1{x-2})^{(n)}&=(-1)^n\frac{n!}{(x-1)^{n+1}}\\ (\frac1{2x+1})^{(n)}&=(-1)^n\frac{n!\cdot2^n}{(2x+1)^{n+1}}\\ (\frac1{2x^2-3x-2})^{(n)}&=\frac{(-1)^n\cdot n!}5[\frac1{(x-2)^{n+1}}-\frac{2^{n+1}}{(2x+1)^{n+1}}] \end{aligned} 2x2−3x−21(x−21)(n)(2x+11)(n)(2x2−3x−21)(n)=51x−21−522x+11=(−1)n(x−1)n+1n!=(−1)n(2x+1)n+1n!⋅2n=5(−1)n⋅n![(x−2)n+11−(2x+1)n+12n+1]
3. 莱布尼茨法则
如果函数 u = u ( x ) u=u(x) u=u(x)与 v = v ( x ) v=v(x) v=v(x)都在点 x x x处具有 n n n阶导数,那么显然 u ( x ) + v ( x ) u(x)+v(x) u(x)+v(x)与 u ( x ) − v ( x ) u(x)-v(x) u(x)−v(x)也在点 x x x处具有 n n n阶导数,且 [ u ± v ] ( n ) = u ( n ) ± v ( n ) [u\pm v]^{(n)}=u^{(n)}\pm v^{(n)} [u±v](n)=u(n)±v(n),乘积 u ( x ) ⋅ v ( x ) u(x)\cdot v(x) u(x)⋅v(x)常用莱布尼茨公式,即
( u v ) ( n ) = C n 0 u ( n ) v + C n 1 u ( n − 1 ) v ′ + ⋯ + C n k u ( n − k ) v ( k ) + ⋯ + C n n u v ( n ) (uv)^{(n)}=C^0_nu^{(n)}v+C^1_nu^{(n-1)}v'+\cdots+C^k_nu^{(n-k)}v^{(k)}+\cdots+C^n_nuv^{(n)} (uv)(n)=Cn0u(n)v+Cn1u(n−1)v′+⋯+Cnku(n−k)v(k)+⋯+Cnnuv(n)
即
( u v ) ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) (uv)^{(n)}=\sum_{k=0}^nC^k_nu^{(n-k)}v^{(k)} (uv)(n)=k=0∑nCnku(n−k)v(k)
一般幂函数或者其他高阶导数为 0 0 0的函数作为 v ( x ) v(x) v(x)
例2:求函数 y = x 2 e 2 x y=x^2e^{2x} y=x2e2x的 n n n阶导数
y ( n ) = x 2 e 2 x = C n 0 ( e 2 x ) ( n ) ⋅ x 2 + C n 1 ( e 2 x ) ( n − 1 ) ⋅ 2 x + C n 2 ( e 2 x ) ( n − 2 ) ⋅ 2 = x 2 ⋅ 2 n e 2 x + n x ⋅ 2 n e 2 x + n ( n − 1 ) ⋅ 2 n − 2 e 2 x \begin{aligned}y^{(n)}&=x^2e^{2x}=C^0_n(e^{2x})^{(n)}\cdot x^2+C^1_n(e^{2x})^{(n-1)}\cdot2x+C^2_n(e^{2x})^{(n-2)}\cdot2\\&=x^2\cdot2^ne^{2x}+nx\cdot 2^{n}e^{2x}+n(n-1)\cdot2^{n-2}e^{2x}\end{aligned} y(n)=x2e2x=Cn0(e2x)(n)⋅x2+Cn1(e2x)(n−1)⋅2x+Cn2(e2x)(n−2)⋅2=x2⋅2ne2x+nx⋅2ne2x+n(n−1)⋅2n−2e2x
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
