导数的定义和介绍

导数定义

y = f ( x ) y=f(x) y=f(x) x 0 x_0 x0的某个领域内有定义,自变量增量为 Δ x \Delta x Δx,因变量增量为 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=f(x_0+\Delta x)-f(x_0) Δy=f(x0+Δx)f(x0),若 lim ⁡ Δ x → 0 = Δ y Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x \lim\limits_{\Delta x\rightarrow0}=\dfrac{\Delta y}{\Delta x}=\lim\limits_{\Delta x\rightarrow0}\dfrac{f(x_0+\Delta x)-f(x_0)}{\Delta x} Δx0lim=ΔxΔy=Δx0limΔxf(x0+Δx)f(x0)极限存在,则说明 y = f ( x ) y=f(x) y=f(x) x 0 x_0 x0处可导。


定义公式: f ′ ( x 0 ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'(x_0)=\lim\limits_{\Delta x\rightarrow0}\dfrac{f(x_0+\Delta x)-f(x_0)}{\Delta x} f(x0)=Δx0limΔxf(x0+Δx)f(x0) f ′ ( x 0 ) = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 f'(x_0)=\lim\limits_{x\rightarrow x_0}\dfrac{f(x)-f(x_0)}{x-x_0} f(x0)=xx0limxx0f(x)f(x0)

左导数: f − ′ ( x 0 ) = lim ⁡ Δ x → 0 − f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'_-(x_0)=\lim\limits_{\Delta x\rightarrow0^-}\dfrac{f(x_0+\Delta x)-f(x_0)}{\Delta x} f(x0)=Δx0limΔxf(x0+Δx)f(x0)

右导数: f + ′ ( x 0 ) = lim ⁡ Δ x → 0 + f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'_+(x_0)=\lim\limits_{\Delta x\rightarrow0^+}\dfrac{f(x_0+\Delta x)-f(x_0)}{\Delta x} f+(x0)=Δx0+limΔxf(x0+Δx)f(x0)

导数存在的充要条件: f − ′ ( x 0 ) = f + ′ ( x 0 ) f'_-(x_0)=f'_+(x_0) f(x0)=f+(x0)


例题1

y = ∣ x ∣ y=|x| y=x x = 0 x=0 x=0处是否可导?

解:
f ′ ( 0 ) = lim ⁡ Δ x → 0 f ( 0 + Δ x ) − f ( 0 ) Δ x = lim ⁡ Δ x → 0 ∣ Δ x ∣ Δ x \qquad f'(0)=\lim\limits_{\Delta x\rightarrow0}\dfrac{f(0+\Delta x)-f(0)}{\Delta x}=\lim\limits_{\Delta x\rightarrow0}\dfrac{|\Delta x|}{\Delta x} f(0)=Δx0limΔxf(0+Δx)f(0)=Δx0limΔx∣Δx

f − ′ ( 0 ) = lim ⁡ Δ x → 0 + − Δ x Δ x = − 1 \qquad f'_-(0)=\lim\limits_{\Delta x\rightarrow0^+}\dfrac{-\Delta x}{\Delta x}=-1 f(0)=Δx0+limΔxΔx=1 f + ′ ( 0 ) = lim ⁡ Δ x → 0 + Δ x Δ x = 1 f'_+(0)=\lim\limits_{\Delta x\rightarrow0^+}\dfrac{\Delta x}{\Delta x}=1 f+(0)=Δx0+limΔxΔx=1

f − ′ ( 0 ) ≠ f + ′ ( 0 ) \qquad f'_-(0)\neq f'_+(0) f(0)=f+(0),所以 y = ∣ x ∣ y=|x| y=x x = 0 x=0 x=0处不可导


例题2

已知 f ′ ( x 0 ) = 1 f'(x_0)=1 f(x0)=1,则 lim ⁡ h → 0 f ( x 0 + h ) − f ( x 0 − h ) h = ‾ \lim\limits_{h\rightarrow 0}\dfrac{f(x_0+h)-f(x_0-h)}{h}=\underline{\qquad\qquad} h0limhf(x0+h)f(x0h)=

解:原式 = lim ⁡ h → 0 f ( x 0 + h ) − f ( x 0 ) h + f ( x 0 ) − f ( x 0 − h ) h = f ′ ( x 0 ) + f ′ ( x 0 ) = 2 =\lim\limits_{h\rightarrow 0}\dfrac{f(x_0+h)-f(x_0)}{h}+\dfrac{f(x_0)-f(x_0-h)}{h}=f'(x_0)+f'(x_0)=2 =h0limhf(x0+h)f(x0)+hf(x0)f(x0h)=f(x0)+f(x0)=2


总结

  • 求导的充要条件:左导数 = = =右导数
  • 可导则一定连续,连续不一定可导


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部