ElasticSearch 系列:分词

分词

搜索引擎的核心是倒排索引(这里不展开讲),而倒排索引的基础就是分词。所谓分词可以简单理解为将一个完整的句子切割为一个个单词的过程。在 es 中单词对应英文为 term。我们简单看个例子:

ES 的倒排索引即是根据分词后的单词创建,即 我、爱、北京、天安门这4个单词。这也意味着你在搜索的时候也只能搜索这4个单词才能命中该文档。

实际上 ES 的分词不仅仅发生在文档创建的时候,也发生在搜索的时候,如下图所示:

读时分词发生在用户查询时,ES 会即时地对用户输入的关键词进行分词,分词结果只存在内存中,当查询结束时,分词结果也会随即消失。而写时分词发生在文档写入时,ES 会对文档进行分词后,将结果存入倒排索引,该部分最终会以文件的形式存储于磁盘上,不会因查询结束或者 ES 重启而丢失。

ES 中处理分词的部分被称作分词器,英文是Analyzer,它决定了分词的规则。ES 自带了很多默认的分词器,比如Standard、 Keyword、Whitespace等等,默认是 Standard。当我们在读时或者写时分词时可以指定要使用的分词器。

倒排索引

正排索引

    文档ID=》文档内容、单词的关联关系

倒排索引

     单词 =》 文档ID的关联关系

分词器概念

分词器是专门处理分词的组件,分词器由以下三部分组成:

  • Character Filters:针对原始文本处理,比如去除 html 标签
  • Tokenizer:按照规则切分为单词,比如按照空格切分
  • Token Filters:将切分的单词进行加工,比如大写转小写,删除 stopwords,增加同义语

一个文本会依次经过 Character Filters,Tokenizer 以及 Token Filters,这个顺序比较好理解,一个文本进来肯定要先对文本数据进行处理,再去分词,最后对分词的结果进行过滤。

ES 内置了许多分词器:

  • Standard Analyzer - 默认分词器,按词切分,小写处理
  • Simple Analyzer - 按照非字母切分(符号被过滤),小写处理
  • Stop Analyzer - 小写处理,停用词过滤(the ,a,is)
  • Whitespace Analyzer - 按照空格切分,不转小写
  • Keyword Analyzer - 不分词,直接将输入当做输出
  • Pattern Analyzer - 正则表达式,默认 \W+
  • Language - 提供了 30 多种常见语言的分词器
  • Customer Analyzer - 自定义分词器

Analyzer API

  • 直接指定 Analyzer 进行测试
GET _analyze
{"analyzer": "standard","text" : "hello world"
}
  • 自定义分词进行测试
POST /_analyze
{"tokenizer": "standard", "filter": ["lowercase"],"text" : "Hello world"
}

参考:

  • Elasticsearch(10) — 内置分词器、中文分词器
  • ElasticSearch 分词器,了解一下


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部