图像的直线检测——霍夫变换(Hough transform)

定义:

霍夫变换(Hough Transform)是图像处理中的一种特征提取技术,可以识别图像中的几何形状。它将图像空间中的特征点映射到参数空间进行投票,通过检测累计结果的局部极值点得到一个符合某特定形状的点的集合。经典霍夫变换用来检测图像中的直线,后来霍夫变换扩展到任意形状物体的识别,多为圆和椭圆。它的抗噪声、抗形变能力较强。另一种直线提取的方法是对图像边缘点进行链码追踪,在得到的链码串中提取直线。

霍夫变换将在一个空间中具有相同形状的曲线或直线映射到另一个坐标空间的一个点上形成峰值,从而把检测任意形状的问题转化为统计峰值问题。

标准霍夫变换:

考虑点和线的对应关系,过一点(x1,y1)的直线可表示为:y1=kx1+b,将变量和参数互换,已知一个点(x1,y1),经过这一点的直线簇可以表示为b=(-x1)k+y1。位于同一条直线上的点具有相同的斜率和截距,反映到参数空间上就是这些直线会交于同一点(k,b)。

举个例子:图像空间有三个点(1,1),(2,2),(3,3),他们在直线y=1*x+0上,如下图所示



本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部