傅里叶级数展开公式,方波的傅里叶展开
目录
- 傅里叶级数
- 方波函数的傅里叶展开
傅里叶级数
{ f ( t ) = a 0 2 + a 1 cos ( ω t ) + b 1 sin ( ω t ) + a 2 cos ( 2 ω t ) + b 2 sin ( 2 ω t ) + a 3 cos ( 3 ω t ) + b 3 sin ( 3 ω t ) + … = a 0 2 + ∑ n = 1 ∞ [ a n cos ( n ω t ) + b n sin ( n ω t ) ] \left\{ \begin{aligned} f(t) =\frac{a_0}{2}&+a_1 \cos (\omega t)+b_1 \sin (\omega t) \\ & +a_2 \cos (2 \omega t)+b_2 \sin (2 \omega t) \\ & +a_3 \cos (3 \omega t)+b_3 \sin (3 \omega t) \\ & +\ldots \\ =\frac{a_0}{2}&+\sum_{n=1}^{\infty}\left[a_n \cos (n \omega t)+b_n \sin (n \omega t)\right] \end{aligned} \right. ⎩ ⎨ ⎧f(t)=2a0=2a0+a1cos(ωt)+b1sin(ωt)+a2cos(2ωt)+b2sin(2ωt)+a3cos(3ωt)+b3sin(3ωt)+…+n=1∑∞[ancos(nωt)+bnsin(nωt)]
{ a n = 2 T ∫ t 0 t 0 + T f ( t ) cos ( n ω t ) d t b n = 2 T ∫ t 0 t 0 + T f ( t ) sin ( n ω t ) d t \left\{ \begin{array}{l} {a_n} = \frac{2}{T}\int_{{t_0}}^{{t_0} + T} f (t)\cos (n\omega t)dt\\ {b_n} = \frac{2}{T}\int_{{t_0}}^{{t_0} + T} f (t)\sin (n\omega t)dt \end{array} \right. {an=T2∫t0t0+Tf(t)cos(nωt)dtbn=T2∫t0t0+Tf(t)sin(nωt)dt
方波函数的傅里叶展开
假设方波周期为 T T T,频率为 f f f,对应角频率为 ω = 2 π f = 2 π T \omega=2\pi f=\frac{2\pi}{T} ω=2πf=T2π,方波幅值为 ± A \pm A ±A,对应的傅里叶级数为:
{ f ( t ) = 4 A π [ sin ( ω t ) + 1 3 sin ( 3 ω t ) + 1 5 sin ( 5 ω t ) + . . . ] = 4 A π ∑ n = 0 ∞ sin ( ( 2 n + 1 ) ω t ) 2 n + 1 \left\{ \begin{aligned} f(t) &= \frac{{4A}}{\pi }\left[ {\sin (\omega t) + \frac{1}{3}\sin (3\omega t) + \frac{1}{5}\sin (5\omega t) + ...} \right]\\ &= \frac{{4A}}{\pi }\sum\limits_{n = 0}^\infty {\frac{{\sin ((2n + 1)\omega t)}}{{2n + 1}}} \end{aligned} \right. ⎩ ⎨ ⎧f(t)=π4A[sin(ωt)+31sin(3ωt)+51sin(5ωt)+...]=π4An=0∑∞2n+1sin((2n+1)ωt)
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
