python经典逆序对问题_逆序对问题 - hyserendipity - 博客园

2018-03-26 22:02:36

逆序对定义:

对于一个包含N个非负整数的数组A[1..n],如果有i < j,且A[ i ]>A[ j ],则称(A[ i] ,A[ j] )为数组A中的一个逆序对。

例如,数组(3,1,4,5,2)的逆序对有(3,1),(3,2),(4,2),(5,2),共4个。

逆序对问题就是求解一个数组中的逆序对的个数,逆序对问题是个非常经典的问题。当然可以写出一个在O(n ^ 2)时间复杂度解决的算法,这里就不对这种naive的解法做介绍了,主要会讲解两种O(nlogn)的解法。

一、树状数组

通过树状数组求解逆序对是个很经典的解法,树状数组的特点是单点更新,区间求和,使用树状数组求解逆序对从本质来说就是一个求和问题,我们可以为每个数字构建一个桶,出现了就在该桶里的数目上加1,可以倒序遍历数组,当遍历到某个数的时候,求getsum(nums[i]),即求解i位后的比a[i]小的数的个数,最后求总和就是结果。

桶排序的问题,这里也会出现,也就是数组中的区间范围如果非常庞大,那么建立max + 1大小的桶就非常的不合算,这时候就需要使用离散化的技术进行预处理。

使用树状数组的时间复杂度为O(nlogn)。

离散化

离散化,把无限空间中有限的个体映射到有限的空间中去,以此提高算法的时空效率。

通俗的说,离散化是在不改变数据相对大小的条件下,对数据进行相应的缩小。例如:

原数据:1,999,100000,15;处理后:1


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部