二分图匹配相关

ACM模版

二分图匹配

匈牙利算法

邻接矩阵+DFS

/**  初始化:g[][]两边顶点的划分情况 *  建立g[i][j]表示i->j的有向边就可以了,是左边向右边的匹配 *  g没有边相连则初始化为0*  uN是匹配左边的顶点数,vN是匹配右边的顶点数 *  调用:res=hungary();输出最大匹配数 *  优点:适用于稠密图,DFS找增广路,实现简洁易于理解*  时间复杂度:O(VE) */
//顶点编号从0开始的
const int MAXN = 510;
int uN, vN;         //  u,v的数目,使用前面必须赋值
int g[MAXN][MAXN];  //  邻接矩阵
int linker[MAXN];
bool used[MAXN];
bool dfs(int u)
{for (int v = 0; v < vN; v++){if (g[u][v] && !used[v]){used[v] = true;if (linker[v] == -1 || dfs(linker[v])){linker[v] = u;return true;}}}return false;
}int hungary()
{int res = 0;memset(linker, -1, sizeof(linker));for (int u = 0; u < uN; u++){memset(used, false, sizeof(used));if (dfs(u)){res++;}}return res;
}

邻接表+DFS

/**  使用前用init()进行初始化,给uN赋值*  加边使用函数addedge(u,v)*/
const int MAXN = 5010;  //  点数的最大值
const int MAXM = 50010; //  边数的最大值struct Edge
{int to, next;
} edge[MAXM];int head[MAXN], tot;void init()
{tot = 0;memset(head, -1, sizeof(head));return ;
}void addedge(int u, int v)
{edge[tot].to = v;edge[tot].next = head[u];head[u] = tot++;return ;
}int linker[MAXN];
bool used[MAXN];
int uN;bool dfs(int u)
{for (int i = head[u]; i != -1; i = edge[i].next){int v = edge[i].to;if (!used[v]){used[v] = true;if (linker[v] == -1 || dfs(linker[v])){linker[v] = u;return true;}}}return false;
}int hungary()
{int res = 0;memset(linker, -1, sizeof(linker));for (int u = 0; u < uN; u++)    //  点的编号0~uN-1{memset(used, false, sizeof(used));if (dfs(u)){res++;}}return res;
}

邻接矩阵+BFS

/**  INIT: g[][]邻接矩阵;*  CALL: res = MaxMatch();Nx, Ny初始化!!! *  优点:适用于稀疏二分图,边较少,增广路较短。*  匈牙利算法的理论复杂度是O(VE)*/
const int MAXN = 1000;
int g[MAXN][MAXN], Mx[MAXN], My[MAXN], Nx, Ny;
int chk[MAXN], Q[MAXN], prev[MAXN];int MaxMatch()
{int res = 0;int qs, qe;memset(Mx, -1, sizeof(Mx));memset(My, -1, sizeof(My));memset(chk, -1, sizeof(chk));for (int i = 0; i < Nx; i++){if (Mx[i] == -1){qs = qe = 0;Q[qe++] = i;prev[i] = -1;bool flag = 0;while (qs < qe && !flag){int u = Q[qs];for (int v = 0; v < Ny && !flag; v++){if (g[u][v] && chk[v] != i){chk[v] = i; Q[qe++] = My[v];if (My[v] >= 0){prev[My[v]] = u;}else{flag = 1;int d = u, e = v;while (d != -1){int t = Mx[d];Mx[d] = e;My[e] = d;d = prev[d];e = t;}}}}qs++;}if (Mx[i] != -1){res++;}}}return res;
}

Hopcroft-Carp算法

邻接矩阵+DFS

/**  INIT: g[][]邻接矩阵;*  CALL: res = MaxMatch(); Nx, Ny要初始化!!!*  时间复杂度: O(V^0.5 * E)*/
const int MAXN = 3001;
const int INF = 1 << 28;
int g[MAXN][MAXN], Mx[MAXN], My[MAXN], Nx, Ny;
int dx[MAXN], dy[MAXN], dis;
bool vst[MAXN];bool searchP()
{queue<int> Q;dis = INF;memset(dx, -1, sizeof(dx));memset(dy, -1, sizeof(dy));for (int i = 0; i < Nx; i++){if (Mx[i] == -1){Q.push(i); dx[i] = 0;}}while (!Q.empty()){int u = Q.front();Q.pop();if (dx[u] > dis){break;}for (int v = 0; v < Ny; v++){if (g[u][v] && dy[v] == -1){dy[v] = dx[u]+1;if (My[v] == -1){dis = dy[v];}else{dx[My[v]] = dy[v] + 1;Q.push(My[v]);}}}}return dis != INF;
}bool DFS(int u)
{for (int v = 0; v < Ny; v++){if (!vst[v] && g[u][v] && dy[v] == dx[u] + 1){vst[v] = 1;if (My[v] != -1 && dy[v] == dis){continue;}if (My[v] == -1 || DFS(My[v])){My[v] = u; Mx[u] = v;return 1;}}}return 0;
}int MaxMatch()
{int res = 0;memset(Mx, -1, sizeof(Mx));memset(My, -1, sizeof(My));while (searchP()){memset(vst, 0, sizeof(vst));for (int i = 0; i < Nx; i++){if (Mx[i] == -1 && DFS(i)){res++;}}}return res;
}

邻接表+DFS

/**  复杂度O(sqrt(n)*E)*  邻接表存图,vector实现*  vector先初始化,然后假如边*  uN为左端的顶点数,使用前赋值(点编号0开始)*/
const int MAXN = 3000;
const int INF = 0x3f3f3f3f;
vector<int>G[MAXN];
int uN;
int Mx[MAXN], My[MAXN];
int dx[MAXN], dy[MAXN];
int dis;
bool used[MAXN];bool SearchP()
{queue<int>Q;dis = INF;memset(dx, -1, sizeof(dx));memset(dy, -1, sizeof(dy));for (int i = 0 ; i < uN; i++){if(Mx[i] == -1){Q.push(i);dx[i] = 0;}}while (!Q.empty()){int u = Q.front();Q.pop();if (dx[u] > dis){break;}int sz = (int)G[u].size();for (int i = 0; i < sz; i++){int v = G[u][i];if (dy[v] == -1){dy[v] = dx[u] + 1;if (My[v] == -1){dis = dy[v];}else{dx[My[v]] = dy[v] + 1;Q.push(My[v]);}}}}return dis != INF;
}bool DFS(int u)
{int sz = (int)G[u].size();for (int i = 0; i < sz; i++){int v = G[u][i];if (!used[v] && dy[v] == dx[u] + 1){used[v] = true;if (My[v] != -1 && dy[v] == dis){continue;}if (My[v] == -1 || DFS(My[v])){My[v] = u;Mx[u] = v;return true;}}}return false;
}int MaxMatch()
{int res = 0;memset(Mx, -1, sizeof(Mx));memset(My, -1, sizeof(My));while (SearchP()){memset(used, false, sizeof(used));for (int i = 0; i < uN; i++){if(Mx[i] == -1 && DFS(i)){res++;}}}return res;
}

二分图最佳匹配

Kuhn Munkras算法

/**  邻接距阵形式,复杂度O(m*m*n) 返回最佳匹配值,传入二分图大小m,n *  邻接距阵mat,表示权,match1,match2返回一个最佳匹配,未匹配顶点*  match值为-1,一定注意m<=n,否则循环无法终止,最小权匹配可将权值 *  取相反数*  初始化:for (i = 0; i < MAXN; ++i)*          for (j = 0; j < MAXN ; ++j)*              mat[i][j] = -inf; *  对于存在的边:mat[i][j] = val ;    //  注意,不能有负值*/
#define MAXN 310
#define inf 1000000000
#define _clr(x) memset(x, -1, sizeof(int) * MAXN)int kuhn_munkras(int m, int n, int mat[][MAXN], int *match_1, int *match_2)
{int s[MAXN], t[MAXN], l_1[MAXN], l_2[MAXN];int p, q, ret = 0;int i, j, k;for (i = 0; i < m; i++){for (l_1[i] = -inf, j = 0; j < n; j++){l_1[i] = mat[i][j] > l_1[i] ? mat[i][j] : l_1[i];}if (l_1[i] == -inf){return -1;  //  无结果}}for (i = 0; i < n; l_2[i++] = 0);for (_clr(match_1), _clr(match_2), i = 0; i < m; i++){for (_clr(t), s[p = q = 0] = i; p <= q && match_1[i] < 0; p++){for (k = s[p], j = 0; j < n && match_1[i] < 0; p++){if (l_1[k] + l_2[j] == mat[k][j] && t[j] < 0){s[++q] = match_2[j], t[j] = k;if (s[q] < 0){for (p = j; p >= 0; j = p){match_2[j] = k = t[j];p = match_1[k];match_1[k] = j;}}}}}if (match_1[i] < 0){for (i--, p = inf, k = 0; k <= q; k++){for (j = 0; j < n; j++){if (t[j] < 0 && l_1[s[k]] + l_2[j] - mat[s[k]][j] < p){p = l_1[s[k]] + l_2[j] - mat[s[k]][j];}}}for (j = 0; j < n; l_2[j] += t[j] < 0 ? 0 : p, j++);for (k = 0; k <= q; l_1[s[k++]] -= p);}}for (i = 0; i < m; i++){   //  if处理无匹配的情况!!if (match_1[i] < 0)             //  ???{return -1;}if (mat[i][match_1[i]] <= -inf) //  ???{return -1;}ret += mat[i][match_1[i]];}return ret;
}

二分图多重匹配

const int MAXN = 1010;
const int MAXM = 510;
int uN, vN;
int g[MAXN][MAXM];
int linker[MAXM][MAXN];
bool used[MAXM];
int num[MAXM];  //  右边最大的匹配数bool dfs(int u)
{for (int v = 0; v < vN; v++){if (g[u][v] && !used[v]){used[v] = true;if (linker[v][0] < num[v]){linker[v][++linker[v][0]] = u;return true;}for (int i = 1; i <= num[0]; i++){if (dfs(linker[v][i])){linker[v][i] = u;return true;}}}}return false;
}int hungary()
{int res = 0;for (int i = 0; i < vN; i++){linker[i][0] = 0;}for (int u = 0; u < uN; u++){memset(used, false, sizeof(used));if (dfs(u)){res++;}}return res;
}


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部