7-14 黑洞数 (20 分)

黑洞数也称为陷阱数,又称“Kaprekar问题”,是一类具有奇特转换特性的数。

任何一个各位数字不全相同的三位数,经有限次“重排求差”操作,总会得到495。最后所得的495即为三位黑洞数。所谓“重排求差”操作即组成该数的数字重排后的最大数减去重排后的最小数。(6174为四位黑洞数。)

例如,对三位数207:

  • 第1次重排求差得:720 - 27 = 693;
  • 第2次重排求差得:963 - 369 = 594;
  • 第3次重排求差得:954 - 459 = 495;

以后会停留在495这一黑洞数。如果三位数的3个数字全相同,一次转换后即为0。

任意输入一个三位数,编程给出重排求差的过程。

输入格式:

输入在一行中给出一个三位数。

输出格式:

按照以下格式输出重排求差的过程:

序号: 数字重排后的最大数 - 重排后的最小数 = 差值

序号从1开始,直到495出现在等号右边为止。

输入样例:

123

结尾无空行

输出样例:

1: 321 - 123 = 198
2: 981 - 189 = 792
3: 972 - 279 = 693
4: 963 - 369 = 594
5: 954 - 459 = 495

结尾无空行

#include
int main()
{int a,b,c,m,s;scanf("%d",&s);int max,min;int cont=0;while(cont==0||s!=495){    a=s/100;b=s/10%10;c=s%10;if(a

 


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部