7-1 黑洞数 (20分)

黑洞数也称为陷阱数,又称“Kaprekar问题”,是一类具有奇特转换特性的数。

任何一个各位数字不全相同的三位数,经有限次“重排求差”操作,总会得到495。最后所得的495即为三位黑洞数。所谓“重排求差”操作即组成该数的数字重排后的最大数减去重排后的最小数。(6174为四位黑洞数。)

例如,对三位数207:

  • 第1次重排求差得:720 - 27 = 693;
  • 第2次重排求差得:963 - 369 = 594;
  • 第3次重排求差得:954 - 459 = 495;

以后会停留在495这一黑洞数。如果三位数的3个数字全相同,一次转换后即为0。

任意输入一个三位数,编程给出重排求差的过程。

输入格式:
输入在一行中给出一个三位数。

输出格式:
按照以下格式输出重排求差的过程:

序号: 数字重排后的最大数 - 重排后的最小数 = 差值
序号从1开始,直到495出现在等号右边为止。

输入样例:

123

输出样例:

1: 321 - 123 = 198
2: 981 - 189 = 792
3: 972 - 279 = 693
4: 963 - 369 = 594
5: 954 - 459 = 495

#include
int main()
{int x, m, n, a[3];int i, j, k, t, l=1;scanf("%d",&x);do{for(i=0;i<3;i++){a[i]=x%10;x/=10;}for(i=0;i<2;i++){k=i;for(j=i+1;j<3;j++){if(a[j]<a[k])k=j;}t=a[k];a[k]=a[i];a[i]=t;}m=a[2]*100+a[1]*10+a[0]*1;n=a[0]*100+a[1]*10+a[2]*1;x=m-n;printf("%d: %d - %d = %d\n",l,m,n,x);l++;}while(x!=495);return 0;
}


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部