基于Holt-Winters方法对资源进行预测

文章目录


  Holt-Winters方法是一种时间序列分析和预报方法。该方法对含有线性趋势和周期波动的非平稳序列适用,利用指数平滑法(EMA)让模型参数不断适应非平稳序列的变化,并对未来趋势进行短期预报。现实场景中如国家GDP历年数据,机器cpu利用率,内存数据等都是时间序列。对未来时间的观测值进行预测是有意义的工作,提前预知未来的数据的走势,可以提前做出行动,如预测cpu使用率,如果cpu飙高,可以及早进行调整,避免机器负载过高而宕机,这个在AIOPS是很常见的一个应用场景。
代码示例

# import needed packages
#-----------------------import math
import numpy  as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn        import linear_model
from scipy.optimize import fmin_l_bfgs_bsdata = open('data.csv')
tsA = sdata.read().split('\n')
tsA.remove("")
tsA = list(map(int, tsA))
source_len = len(tsA)def holtWinters(ts, p, sp, ahead, mtype, alpha = None, beta = None, gamma = None):a, b, s = _initValues(mtype, ts, p, sp)if alpha == None or beta == None or gamma == None:ituning   = [0.1, 0.1, 0.1]ibounds   = [(0,1), (0,1), (0,1)]optimized = fmin_l_bfgs_b(_MSD, ituning, args = (mtype, ts, p, a, b, s[:]), bounds = ibounds, approx_grad = True)alpha, beta, gamma = optimized[0]MSD, params, smoothed = _expSmooth(mtype, ts, p, a, b, s[:], alpha, beta, gamma)predicted = _predictValues(mtype, p, ahead, params)return {'alpha': alpha, 'beta': beta, 'gamma': gamma, 'MSD': MSD, 'params': params, 'smoothed': smoothed, 'predicted': predicted}def _initValues(mtype, ts, p, sp):initSeries = pd.Series(ts[:p*sp])if mtype == 'additive':rawSeason = initSeries - initSeries.rolling(window=p, min_periods=p, center=True).mean()initSeason = [np.nanmean(rawSeason[i::p]) for i in range(p)]initSeason = pd.Series(initSeason) - np.mean(initSeason)deSeasoned = [initSeries[v] - initSeason[v % p] for v in range(len(initSeries))]else:rawSeason  = initSeries / initSeries.rolling(window = p, min_periods = p, center = True).mean()initSeason = [np.nanmean(rawSeason[i::p]) for i in range(p)]initSeason = pd.Series(initSeason) / math.pow(np.prod(np.array(initSeason)), 1/p)deSeasoned = [initSeries[v] / initSeason[v % p] for v in range(len(initSeries))]lm = linear_model.LinearRegression()lm.fit(pd.DataFrame({'time': [t+1 for t in range(len(initSeries))]}), pd.Series(deSeasoned))return float(lm.intercept_), float(lm.coef_), list(initSeason)def _MSD(tuning, *args):predicted = []mtype     = args[0]ts, p     = args[1:3]Lt1, Tt1  = args[3:5]St1       = args[5][:]alpha, beta, gamma = tuning[:]for t in range(len(ts)):if mtype == 'additive':Lt = alpha * (ts[t] - St1[t % p]) + (1 - alpha) * (Lt1 + Tt1)Tt = beta  * (Lt - Lt1)           + (1 - beta)  * (Tt1)St = gamma * (ts[t] - Lt)         + (1 - gamma) * (St1[t % p])predicted.append(Lt1 + Tt1 + St1[t % p])else:Lt = alpha * (ts[t] / St1[t % p]) + (1 - alpha) * (Lt1 + Tt1)Tt = beta  * (Lt - Lt1)           + (1 - beta)  * (Tt1)St = gamma * (ts[t] / Lt)         + (1 - gamma) * (St1[t % p])predicted.append((Lt1 + Tt1) * St1[t % p])Lt1, Tt1, St1[t % p] = Lt, Tt, Streturn sum([(ts[t] - predicted[t])**2 for t in range(len(predicted))])/len(predicted)def _expSmooth(mtype, ts, p, a, b, s, alpha, beta, gamma):smoothed = []Lt1, Tt1, St1 = a, b, s[:]for t in range(len(ts)):if mtype == 'additive':Lt = alpha * (ts[t] - St1[t % p]) + (1 - alpha) * (Lt1 + Tt1)Tt = beta  * (Lt - Lt1)           + (1 - beta)  * (Tt1)St = gamma * (ts[t] - Lt)         + (1 - gamma) * (St1[t % p])smoothed.append(Lt1 + Tt1 + St1[t % p])else:Lt = alpha * (ts[t] / St1[t % p]) + (1 - alpha) * (Lt1 + Tt1)Tt = beta  * (Lt - Lt1)           + (1 - beta)  * (Tt1)St = gamma * (ts[t] / Lt)         + (1 - gamma) * (St1[t % p])smoothed.append((Lt1 + Tt1) * St1[t % p])Lt1, Tt1, St1[t % p] = Lt, Tt, StMSD = sum([(ts[t] - smoothed[t])**2 for t in range(len(smoothed))])/len(smoothed)return MSD, (Lt1, Tt1, St1), smootheddef _predictValues(mtype, p, ahead, params):'''subroutine to generate predicted values @ahead periods into the future'''Lt, Tt, St = paramsif mtype == 'additive':return [Lt + (t+1)*Tt + St[t % p] for t in range(ahead)]else:return [(Lt + (t+1)*Tt) * St[t % p] for t in range(ahead)]results = holtWinters(tsA, 12, 4, 24, mtype = 'additive')
results = holtWinters(tsA, 12, 4, 24, mtype = 'multiplicative')print("TUNING: ", results['alpha'], results['beta'], results['gamma'], results['MSD'])
print("FINAL PARAMETERS: ", results['params'])
print("PREDICTED VALUES: ", results['predicted'])
last_len =len(results['predicted'])
x1 = range(0, source_len)
x2 = range(source_len, source_len + last_len)
y1 = tsA
y2 = results['predicted']
fig = plt.figure()
plt.plot(x1, y1, marker=r'', color=u'blue', linestyle='-', label='Initial value')
plt.plot(x2, y2, marker=r'', color=u'red', linestyle='-', label='Estimate value')
plt.xlabel('time')
plt.ylabel('value')
plt.legend(loc='best')
plt.savefig('line_plot.png', dpi=400, bbox_inches='tight')
plt.show()

在这里插入图片描述


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部