推荐系统

小白产品必看的推荐系统四步指南!

互联网使得信息传播从传统的纸媒到如今去中心化的UGC方式。当海量的信息进行分发时,作为产品设计者,我们需要考虑的问题是如何做好内容分发系统。今日头条为我们提供的一个方向——算法推荐。那么,作为一个新产品,该如何从0到1完成一个推荐系统,作者总结了四步,与你分享。互联网使信息传播从传统的中心化纸媒逐渐变成了去中心的UGC方式。在这个时代每个人都可以是信息生产者,可以

小白产品必看的推荐系统四步指南!

互联网使信息传播从传统的中心化纸媒逐渐变成了去中心的UGC方式。在这个时代每个人都可以是信息生产者,可以是信息传播者,更是信息消费者。而当海量被生产,信息发生

数据中台实战:基于标签的推荐系统必须要解决的4个核心问题

在推荐系统中,标签的使用可以让定位更精准,提升匹配的水平和效率。那么,在业务过程中,我们应当采用哪种标签推荐方式?本篇文章里,作者结合实际经验,总结了如何利用数据中台解决问题、搭建符合实际业务的标签推荐系统,一起来看一下。最近公司开了个新的产品线叫:圆猿买手,大家都知道我公司搭了一个B2B的女装批发平台,主要服务的是全国做服装批发生意的采购商、供应商。圆猿买手这个

推荐策略产品经理实操(三):推荐系统与搜索系统的区别——整体逻辑流程对比

推荐的目的主要在于依据用户行为偏好,为用户推荐可能喜欢的事物;而搜索则是用户出于一定目的进行检索,前者为被动获取,后者为主动获取。具体而言,推荐系统与搜索系统有何差异?本篇文章里,作者从整体逻辑层面对推荐系统与搜索系统的区别进行了总结,一起来看一下。根据我平时接触的推荐和搜索业务,简单地将2个业务的流程进行梳理以及知识点扩展,便于需要的同学能够快速地了解2个系统的

影响推荐系统效果 5 个因素

影响推荐系统的因素有哪些?文章总结了5个要素,一起来看看。在一个网站或者app中,推荐系统通常会和整个大系统的多个方面有交互,推荐系统本身也有很多的组成部分,再加上整个系统所处的大环境,综合起来会有很多因素影响着一个推荐系统最终效果的好坏,这里的效果指的是包括准确率、召回率、多样性等等指标在内的一个整体整体效果,不做具体区分。在这里我们试对其中一些主要的因素做一讨论。需要指

数据算法:推荐系统的实践与思考(上)

本文内容来自神策数据《智能推荐——应用场景与技术难点剖析》闭门会分享内容整理,分享者将我们介绍:如何从四个方面做一个推荐系统。在工作中,大家遇到的与推荐系统相关的问题是:“数据太稀疏、数据没有形成闭环、数据没办法跟其他系统结合”等等。这些内容是摆在我们面前的实际问题,那么当我们真正要开始做一个推荐系统时,需要从几方面考虑问题呢?算法:到底应该选择什么样的算法?无论是协同过滤