ARIMA、ARIMAX、 动态回归和OLS 回归预测多元时间序列
原文链接:http://tecdat.cn/?p=25220
当ARIMA模型包括其它时间序列作为输入变量时,被称为传递函数模型(transfer function model)、多变量时间序列模型(multivariate time series model)、ARIMAX模型或Box-Tiao模型。传递函数模型是ARIMA模型的自然推广,Pankratz统称这种包含其它时间序列作为输入变量的ARIMA模型为动态回归。
用于预测的 Arima
加载相关包和数据
bata<-read.csv
colnames(bata)
bata<-bata\[order(as.Date,\]
bata<-bata\[order(as.Date,\]
bata$workda<-as.factor
head(bata) 
将数据划分为训练集和测试集
#ARIMA 编程开始
## 75% 的样本量
smsize <- floor(0.95 * nrow)
print(smze) 
## 设置种子可重现
set.seed(123)
traid <- sample
trn <- bata\[1:smize, \]
tet <- baata\[smp_size+1:nrow, \]
tet<-na.omit 创建预测矩阵
xreg <- cbind(as_workday=model.matrix, Temp,Humid,Winds)# 删除截距
xg <- xg\[,-1\]# 重命名列
colnames<- c("Aldays","Tep","Humty","Wined")#为测试数据创建相同的xrg1 <- cbind
# 删除截距
xreg1 <- xre1\[,-1\]# 重命名列
colnames <- c("Aays","Te","uiiy","Wnsed") 为 arima 预测的训练数据创建时间序列变量
Cont <- ts 推论:由于数据是每天的,频率为 365,开始日期为 2016-7-7
用季节性拟合 ARIMA 模型

Fo_aes<-forecast 
计算测试数据集 MSE
mean((tt - Finlues)^2) 
在去除季节性之前绘制预测值
library(ggplot2) 
点击标题查阅往期内容

Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列

左右滑动查看更多

01

02

03

04

无季节性拟合 ARIMA
去除季节性数据集和绘图
decata = decompos
### 查找去季节数据的 ARIMAX 模型
moesea 
Foecs<-forecast 去除季节性后绘制预测值
library(ggplot2)
plot(Co, series="Data") +
autolayer+
autolayer 
均方误差分量
mean((tount - Fis_des)^2) 
通过采用滞后变量的输出以及滞后 1,2 的输入进行动态回归
x<-train\[order,\]ti_ag <- x %>%mutate
x1<-test
testg <- x1 %>%mutate 使用动态滞后变量的 OLS 回归
mlm <- lm 
推论:仅保留 P 值 <0.05 的重要变量并删除其他变量
仅保留重要变量的情况下重新创建 OLS 回归
Myal <-lm
summary(Myal ) 
在测试数据上预测相同以计算 MSE
prynm<-predict# 动态回归的均方误差
mean((teunt - tPrecd)^2) 
绘制预测与实际
plot
abline 

本文摘选《R语言ARIMA、ARIMAX、 动态回归和OLS 回归预测多元时间序列
》,点击“阅读原文”获取全文完整资料。
点击标题查阅往期内容
时间序列和ARIMA模型预测拖拉机销售的制造案例研究
Python中利用长短期记忆模型LSTM进行时间序列预测分析 - 预测电力负荷数据
Fama French (FF) 三因子模型和CAPM模型分析股票市场投资组合风险/收益可视化
配对交易策略统计套利量化交易分析股票市场
Copula 算法建模相依性分析股票收益率时间序列案例
用COPULA模型进行蒙特卡洛(MONTE CARLO)模拟和拟合股票收益数据分析
R使用LASSO回归预测股票收益
金融时间序列模型ARIMA 和GARCH 在股票市场预测应用
时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格
自然语言处理NLP:主题LDA、情感分析疫情下的新闻文本数据
在R语言中使用航空公司复杂网络对疫情进行建模
matlab用高斯曲线拟合模型分析疫情数据
R语言ARIMA-GARCH波动率模型预测股票市场苹果公司日收益率时间序列
R语言中的时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格
R语言用综合信息准则比较随机波动率(SV)模型对股票价格时间序列建模
R语言回测交易:根据历史信号/交易创建股票收益曲线
Python中TensorFlow的长短期记忆神经网络(LSTM)、指数移动平均法预测股票市场和可视化
R语言k-Shape时间序列聚类方法对股票价格时间序列聚类
R语言逻辑回归Logistic回归分析预测股票涨跌
R语言时变波动率和ARCH,GARCH,GARCH-in-mean模型分析股市收益率时间序列
R语言中的copula GARCH模型拟合时间序列并模拟分析
R语言多元Copula GARCH 模型时间序列预测
R语言ARMA-GARCH-COPULA模型和金融时间序列案例
R语言多元CopulaGARCH模型时间序列预测
R语言乘法GARCH模型对高频交易数据进行波动性预测
R语言GARCH-DCC模型和DCC(MVT)建模估计
Python使用GARCH,EGARCH,GJR-GARCH模型和蒙特卡洛模拟进行股价预测
R语言时间序列GARCH模型分析股市波动率
R语言ARMA-EGARCH模型、集成预测算法对SPX实际波动率进行预测
matlab实现MCMC的马尔可夫转换ARMA - GARCH模型估计
Python使用GARCH,EGARCH,GJR-GARCH模型和蒙特卡洛模拟进行股价预测
使用R语言对S&P500股票指数进行ARIMA + GARCH交易策略
R语言用多元ARMA,GARCH ,EWMA, ETS,随机波动率SV模型对金融时间序列数据建模
R语言股票市场指数:ARMA-GARCH模型和对数收益率数据探索性分析
R语言多元Copula GARCH 模型时间序列预测
R语言使用多元AR-GARCH模型衡量市场风险
R语言中的时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格
R语言用Garch模型和回归模型对股票价格分析
GARCH(1,1),MA以及历史模拟法的VaR比较
matlab估计arma garch 条件均值和方差模型
R语言ARMA-GARCH-COPULA模型和金融时间序列案例
欲获取全文文件,请点击左下角“阅读原文”。


![]()

本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
