非主流自然语言处理——遗忘算法系列(三):分词
一、前言
前面介绍了词库的自动生成的方法,本文介绍如何利用前文所生成的词库进行分词。
二、分词的原理
分词的原理,可以参看吴军老师《数学之美》中的相关章节,这里摘取Google黑板报版本中的部分:
从上文中,可以知道分词的任务目标:给出一个句子S,找到一种分词方案,使下面公式中的P(S)最大:
不过,联合概率求起来很困难,这种情况我们通常作马尔可夫假设,以简化问题,即:任意一个词wi的出现概率只同它前面的词 wi-1 有关。
关于这个问题,吴军老师讲的深入浅出,整段摘录如下:
另外,如果我们假设一个词与其他词都不相关,即相互独立时,此时公式最简,如下:
这个假设分词无关的公式,也是本文所介绍的分词算法所使用的。
三、分词的实现
1、算法分析
问:假设分词结果中各词相互无关是否可行?
答:可行,前提是使用遗忘算法系列(二)中所述方法生成的词库,理由如下:
分析ICTCLAS广受好评的分词系统的免费版源码,可以发现,在这套由张华平、刘群两位博士所开发分词系统的算法中假设了:分词结果中词只与其前面的一个词有关。
回忆我们词库生成的过程可以知道,如果相邻的两个词紧密相关,那么这两个词会连为一个粗粒度的词被加入词库中,如:除“清华”、“大学”会是单独的词外,“清华大学”也会是一个词,分词过程中具体选用那种,则由它们的概率来决定。
也就是说,我们在生成词库的同时,已经隐含的完成了相关性训练。
关于ICTCLAS源码分析的文章,可以参看吕震宇博文:《天书般的ICTCLAS分词系统代码》。
问:如何实现分词?
答:基于前文生成的词库,我们可以假设分词结果相互无关,分词过程就比较简单,使用下面的步骤可以O(N)级时间,单遍扫描完成分词:
逐字扫描句子,从词库中查出限定字长内,以该字结尾的所有词,分别计算其中的词与该词之前各词的概率乘积,取结果值最大的词,分别缓存下当前字所在位置的最大概率积,以及对应的分词结果。
重复上面的步骤,直到句子扫描完毕,最后一字位置所得到即为整句分词结果。
2、实现代码
/// /// 分词(同时自动维护词典)/// /// 待分词文本/// 邻键集合(用于生成词库)/// 词库/// 最大词长(建议:细粒度为4、粗粒度为7)/// 是否同时更新邻键集合/// 是否同时更新词库/// 返回分词结果 public static List Segment(string text, MemoryBondColl objCharBondColl, MemoryItemColl objKeyWordColl, int maxWordLen = 7, bool bUpdateCharBondColl = true, bool bUpdateKeyWordColl = true){if (String.IsNullOrEmpty(text)) return new List();if (maxWordLen == 0) maxWordLen = text.Length;//此处使用了个技巧:偶尔发现,词库在遗忘公式作用下,其总量也为相对稳定的固定值,且与MinuteOffsetSize相当。//故此处以此替换所有词的遗忘后的总词频,这样可以在处理流式数据时,避免动态计算词库总词频(因其计算量较大)。double dLogTotalCount = Math.Log(objKeyWordColl.MinuteOffsetSize, Math.E);if (bUpdateCharBondColl || bUpdateKeyWordColl){//使用当前待分词语句更新词库,此步骤可与分词同时处理以减少不必要的两遍扫描,此处为代码清晰而拆出。WordDictBLL.UpdateKeyWordColl(text, objCharBondColl, objKeyWordColl, bUpdateCharBondColl, bUpdateKeyWordColl);}//用于缓存各个位置对应的最佳分词结果Dictionary> objKeyWordBufferDict = new Dictionary>();//用于缓存各个位置对应的概率积,避免不必要的重复计算Dictionary objKeyWordValueDict = new Dictionary();//逐字扫描for (int k = 0; k < text.Length; k++){List objKeyWordList = new List();double dKeyWordValue = 0;//检索以当前字结尾、指定字长内的所有词for (int len = 0; len <= Math.Min(k, maxWordLen); len++){int startpos = k - len;string keyword = text.Substring(startpos, len + 1);if (len > 0 && !objKeyWordColl.Contains(keyword)) continue;double dTempValue = 0;if (objKeyWordColl.Contains(keyword)){//计算该词的概率,此处使用对数形式计算,化乘除为加减的同时避免连乘导致的数值过小dTempValue = -(dLogTotalCount - Math.Log(DictionaryDAL.CalcRemeberValue(keyword, objKeyWordColl), Math.E));}if (objKeyWordValueDict.ContainsKey(startpos - 1)){//读取该词之前所有词的概率积对数,并累加上当前词的概率dTempValue += objKeyWordValueDict[startpos - 1];//判断该词的概率是否最大if (dKeyWordValue == 0 || dTempValue > dKeyWordValue){//如果是,则保存临时结果dKeyWordValue = dTempValue;objKeyWordList = new List(objKeyWordBufferDict[startpos - 1]);objKeyWordList.Add(keyword);}}else{//如果此词是由句首开始的,则无需读取缓存if (dKeyWordValue == 0 || dTempValue > dKeyWordValue){dKeyWordValue = dTempValue;objKeyWordList = new List();objKeyWordList.Add(keyword);}}}//记录本位置的最佳结果objKeyWordBufferDict.Add(k, objKeyWordList);objKeyWordValueDict.Add(k, dKeyWordValue);}//最后一个字的最佳结果也是整句的最佳结果,即为所求。return objKeyWordBufferDict[text.Length - 1];}
3、算法特点
3.1、无监督学习;
3.2、O(N)级时间复杂度;
3.3、词库自维护,程序可无需人工参与的情况下,自行发现并添加新词、调整词频、清理错词、移除生僻词,保持词典大小适当;
3.4、领域自适应:领域变化时,词条、词频自适应的随之调整;
3.5、支持多语种混合分词。
四、演示程序下载
演示程序与词库生成的相同:
下载地址:遗忘算法(词库生成、分词、词权重)演示程序.rar
五、技术交流及业务
本系列文以介绍各项基础技术的实现为主,更多综合应用或项目开发,请移步入群或联系本人:
1、技术QQ群: 217947873
2、联系方式:
2.1、QQ:老憨 244589712
2.2、邮箱: gzdmcaoyc@163.com
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
