零基础入门心电图心跳信号多分类预测挑战赛——赛题理解
Task1 赛题理解
学习目标
理解赛题数据和目标,对评分体系进行理解
在阿里云完成报名,并下载好数据熟悉比赛过程(baseline)
1.1 赛题概况
比赛要求参赛选手根据给定的数据集,建立模型,预测不同的心跳信号。赛题以预测心电图心跳信号类别为任务,数据集报名后可见并可下载,该该数据来自某平台心电图数据记录,总数据量超过20万,主要为1列心跳信号序列数据,其中每个样本的信号序列采样频次一致,长度相等。为了保证比赛的公平性,将会从中抽取10万条作为训练集,2万条作为测试集A,2万条作为测试集B,同时会对心跳信号类别(label)信息进行脱敏。
1.2 数据概况
train.csv
- id 为心跳信号分配的唯一标识
- heartbeat_signals 心跳信号序列(数据之间采用“,”进行分隔)
- label 心跳信号类别(0、1、2、3)
testA.csv
- id 心跳信号分配的唯一标识
- heartbeat_signals 心跳信号序列(数据之间采用“,”进行分隔)
1.3 预测指标(理解)
选手需提交4种不同心跳信号预测的概率,选手提交结果与实际心跳类型结果进行对比,求预测的概率与真实值差值的绝对值。
具体计算公式如下:
总共有n个病例,针对某一个信号,若真实值为[y1,y2,y3,y4],模型预测概率值为[a1,a2,a3,a4],那么该模型的评价指标abs-sum为 a b s − s u m = ∑ j = 1 n ∑ i = 1 4 ∣ y i − a i ∣ {abs-sum={\mathop{ \sum }\limits_{{j=1}}^{{n}}{{\mathop{ \sum }\limits_{{i=1}}^{{4}}{{ \left| {y\mathop{{}}\nolimits_{{i}}-a\mathop{{}}\nolimits_{{i}}} \right| }}}}}} abs−sum=j=1∑ni=1∑4∣yi−ai∣ 例如,某心跳信号类别为1,通过编码转成[0,1,0,0],预测不同心跳信号概率为[0.1,0.7,0.1,0.1],那么这个信号预测结果的abs-sum为 a b s − s u m = ∣ 0.1 − 0 ∣ + ∣ 0.7 − 1 ∣ + ∣ 0.1 − 0 ∣ + ∣ 0.1 − 0 ∣ = 0.6 {abs-sum={ \left| {0.1-0} \right| }+{ \left| {0.7-1} \right| }+{ \left| {0.1-0} \right| }+{ \left| {0.1-0} \right| }=0.6} abs−sum=∣0.1−0∣+∣0.7−1∣+∣0.1−0∣+∣0.1−0∣=0.6
其他标准
5.宏查准率(macro-P)
计算每个样本的精确率然后求平均值 m a c r o P = 1 n ∑ 1 n p i {macroP=\frac{{1}}{{n}}{\mathop{ \sum }\limits_{{1}}^{{n}}{p\mathop{{}}\nolimits_{{i}}}}} macroP=n11∑npi
6.宏查全率(macro-R)
计算每个样本的召回率然后求平均值 m a c r o R = 1 n ∑ 1 n R i {macroR=\frac{{1}}{{n}}{\mathop{ \sum }\limits_{{1}}^{{n}}{R\mathop{{}}\nolimits_{{i}}}}} macroR=n11∑nRi
7.宏F1(macro-F1) m a c r o F 1 = 2 × m a c r o P × m a c r o R m a c r o P + m a c r o R {macroF1=\frac{{2 \times macroP \times macroR}}{{macroP+macroR}}} macroF1=macroP+macroR2×macroP×macroR 与上面的宏不同,微查准查全,先将多个混淆矩阵的TP,FP,TN,FN对应位置求平均,然后按照P和R的公式求得micro-P和micro-R,最后根据micro-P和micro-R求得micro-F1
8.微查准率(micro-P) m i c r o P = T P ‾ T P ‾ × F P ‾ {microP=\frac{{\overline{TP}}}{{\overline{TP} \times \overline{FP}}}} microP=TP×FPTP
9.微查全率(micro-R) m i c r o R = T P ‾ T P ‾ × F N ‾ {microR=\frac{{\overline{TP}}}{{\overline{TP} \times \overline{FN}}}} microR=TP×FNTP
10.微F1(micro-F1) m i c r o F 1 = 2 × m i c r o P × m i c r o R m i c r o P + m i c r o R {microF1=\frac{{2 \times microP\times microR }}{{microP+microR}}} microF1=microP+microR2×microP×microR
细节
对比赛的时间和周期有清晰的认识,不因为这个错过开始时间。并对他人的文章和经验进行借鉴和分析。
数据下载情况

报名情况

跑baseline

已将baseline放入本地notebook中运行并得到结果上交到天池平台

本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
