tensorflow训练代码1
#coding :utf-8
#0导入模块,生成模拟数据集
import tensorflow as tf
import numpy as np
BATCH_SIZE = 8
seed = 24355
#基于seed产生随机数
rng = np.random.RandomState(seed)
#随机数返回32行2列的矩阵,表示32组 体积和重量 作为输入数据集
X = rng.rand(32,2)
#从X这个32行2列的矩阵中去除一行判断如果和小于1给Y赋值1 如果和不小于1给Y赋值0
#作为输入数据集标签(正确答案)
#print(X)
Y = [[int(x0 + x1 < 1)] for (x0, x1) in X]
print(“X:\n”,X)
print(“Y:\n”,Y)
#1 定义神经网络的输入,参数和输出,定义向前传播过程
x = tf.placeholder(tf.float32,shape = (None,2))
y_ = tf.placeholder(tf.float32,shape = (None,1))
w1 = tf.Variable(tf.random_normal([2,3],stddev = 1,seed = 1))
w2 = tf.Variable(tf.random_normal([3,1],stddev = 1,seed = 1))
a = tf.matmul(x,w1)
y = tf.matmul(a,w2)
#2 定义损失函数及反向传播方法
loss = tf.reduce_mean(tf.square(y-y_))
train_step = tf.train.GradientDescentOptimizer(0.001).minimize(loss)
#train_step = tf.train.AdamOptimizer(0.001).minimize(loss)
#train_step = tf.train.MomentumOptimizer(0.001).minimize(loss)
#3生成绘画,训练STEPS轮
with tf.Session() as sess:
inint_op = tf.global_variables_initializer()
sess.run(inint_op)
# 输出目前(未经训练)的参数取值
print("w1:\n",sess.run(w1))
print("w2:\n",sess.run(w2))
print("\n")# 训练模型
STEPS = 30000
for i in range(STEPS):start = (i * BATCH_SIZE)%32end = start + BATCH_SIZEsess.run(train_step,feed_dict = {x:X[start:end],y:Y[start:end]})if i % 500 == 0:total_loss = sess.run(loss,feed_dict={x:X,y_:Y})print("After %d training step(s),loss on all data is %g"%(i,total_loss))print("\n")
print("w1:\n",sess.run(w1))
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
