【AIGC】Llama2-7B-Chat模型微调

环境

微调框架:LLaMA-Efficient-Tuning
训练机器:4*RTX3090TI (24G显存)
python环境:python3.8, 安装requirements.txt依赖包

一、Lora微调

1、准备数据集

在这里插入图片描述

2、训练及测试

1)创建模型输出目录

mkdir -p models/llama2_7b_chat/llama-main/train_models/llama2_7b_chat_muti_gpus_01_epoch10/train_model

2)创建deepspeed配置文件目录

mkdir -p models/baichuan2_13b_chat/deepspeed_config

3)创建deepspeed配置文件

vi models/llama2_7b_chat/llama-main/deepspeed_config/llama2_7b_chat_muti_gpus_01_epoch10.json
{"bf16": {"enabled": true},"fp16": {"enabled": "auto","loss_scale": 0,"loss_scale_window": 1000,"initial_scale_power": 16,"hysteresis": 2,"min_loss_scale": 1},"optimizer": {"type": "AdamW","params": {"lr": "auto","betas": "auto","eps": "auto","weight_decay": "auto"}},"scheduler": {"type": "WarmupDecayLR","params": {"last_batch_iteration": -1,"total_num_steps": "auto","warmup_min_lr": "auto","warmup_max_lr": "auto","warmup_num_steps": "auto"}},"zero_optimization": {"stage": 3,"offload_optimizer": {"device": "cpu","pin_memory": true},"offload_param": {"device": "cpu","pin_memory": true},"overlap_comm": true,"contiguous_gradients": true,"sub_group_size": 1e9,"reduce_bucket_size": "auto","stage3_prefetch_bucket_size": "auto","stage3_param_persistence_threshold": "auto","stage3_max_live_parameters": 2e9,"stage3_max_reuse_distance": 2e9,"stage3_gather_16bit_weights_on_model_save": true},"gradient_accumulation_steps": "auto","gradient_clipping": "auto","steps_per_print": 2000,"train_batch_size": "auto","train_micro_batch_size_per_gpu": "auto","wall_clock_breakdown": false
}

4)训练模型

deepspeed --num_gpus 2 --master_port=9902 src/train_bash1.py \--stage sft \--model_name_or_path models/llama2_7b_chat/origin_model/Llama-2-7b-chat-hf \--do_train \--dataset example1 \--template llama2 \--finetuning_type lora \--lora_target q_proj,v_proj \--output_dir models/llama2_7b_chat/llama-main/train_models/llama2_7b_chat_muti_gpus_01_epoch10/train_model \--overwrite_cache \--per_device_train_batch_size 2 \--gradient_accumulation_steps 2 \--lr_scheduler_type cosine \--logging_steps 10 \--save_steps 500 \--learning_rate 5e-5 \--num_train_epochs 100.0 \--plot_loss \--bf16 \--deepspeed models/llama2_7b_chat/llama-main/deepspeed_config/llama2_7b_chat_muti_gpus_01_epoch10.json

在这里插入图片描述

  1. 测试模型
python src/cli_demo.py \--model_name_or_path models/llama2_7b_chat/origin_model \--template baichuan2 \--finetuning_type lora \--checkpoint_dir models/llama2_7b_chat/llama-main/train_models/llama2_7b_chat_muti_gpus_01_epoch10/train_model

6)启动服务

python src/web_demo1.py \--model_name_or_path models/llama2_7b_chat/origin_model/Llama-2-7b-chat-hf  \--template llama2 \--finetuning_type lora \--checkpoint_dir models/llama2_7b_chat/llama-main/train_models/llama2_7b_chat_muti_gpus_01_epoch10/train_model

在这里插入图片描述

3、注意事项:


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部