行走机器人模拟(failed)

无限网格上的机器人从点 (0, 0) 处开始出发,面向北方。该机器人可以接收以下三种类型的命令:

  • -2:向左转 90 度
  • -1:向右转 90 度
  • 1 <= x <= 9:向前移动 x 个单位长度

有一些网格方块被视作障碍物。 

第 i 个障碍物位于网格点  (obstacles[i][0], obstacles[i][1])

如果机器人试图走到障碍物上方,那么它将停留在障碍物的前一个网格方块上,但仍然可以继续该路线的其余部分。

返回从原点到机器人的最大欧式距离的平方

 

示例 1:

输入: commands = [4,-1,3], obstacles = []
输出: 25
解释: 机器人将会到达 (3, 4)

示例 2:

输入: commands = [4,-1,4,-2,4], obstacles = [[2,4]]
输出: 65
解释: 机器人在左转走到 (1, 8) 之前将被困在 (1, 4) 处

 

提示:

  1. 0 <= commands.length <= 10000
  2. 0 <= obstacles.length <= 10000
  3. -30000 <= obstacle[i][0] <= 30000
  4. -30000 <= obstacle[i][1] <= 30000
  5. 答案保证小于 2 ^ 31

 

正解

//排行榜第一的答案 by cuiaoxiang
typedef pair ii;
const int d[4][2] = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
class Solution {
public:int robotSim(vector& commands, vector>& obstacles) {set A;for (auto& it : obstacles) {A.insert({it[0], it[1]});}int dir = 0, x = 0, y = 0;int ret = 0;for (auto& it : commands) {if (it == -2) {dir = (dir + 3) % 4;} else if (it == -1) {dir = (dir + 1) % 4;} else {for (int k = 0; k < it; ++k) {int nx = x + d[dir][0];int ny = y + d[dir][1];if (A.count({nx, ny})) break;x = nx;y = ny;}}
//            cout << x << " " << y << " " << dir << endl;ret = max(ret, x * x + y * y);}return ret;}
};

 

我自己头铁想用“低级”方式 但是没有实力 于是就超时了 (思路还是有些借鉴了第一的dalao,一开始因为石头的问题折腾太久)

猜想正解应该就是一步一走+set迭代器对比

(这道题是Easy题 GG)

个人超时答案

class Solution {
public:enum{left, forward, right, backward};int robotSim(vector& commands, vector>& obstacles){int direction = 1, x = 0, y = 0, nx, ny;int ret = 0;bool flag = false;for(int i = 0; i < commands.size(); i++){int asd = commands[i] ;if(asd == -1) direction = (direction + 1) % 4;else if(asd == -2) direction = (direction + 3) % 4;else{switch(direction){case forward:ny = y;for(int j = 0; j < asd; j++){ny++;for(int k = 0; k < obstacles.size(); k++){if(x == obstacles[k][0] && ny == obstacles[k][1]){flag = true;break;}}if(flag) {flag = false; break;}y++;}ret = max(ret, x*x + y*y);break;case backward:ny = y;for(int j = 0; j < asd; j++){ny--;for(int k = 0; k < obstacles.size(); k++){if(x == obstacles[k][0] && ny == obstacles[k][1]){flag = true;break;}}if(flag) {flag = false; break;}y--;}ret = max(ret, x*x + y*y);break;case right:nx = x;for(int j = 0; j < asd; j++){nx++;for(int k = 0; k < obstacles.size(); k++){if(nx == obstacles[k][0] && y == obstacles[k][1]){flag = true;break;}}if(flag) {flag = false; break;}x++;}ret = max(ret, x*x + y*y);break;case left:nx = x;for(int j = 0; j < asd; j++){nx--;for(int k = 0; k < obstacles.size(); k++){if(nx == obstacles[k][0] && y == obstacles[k][1]){flag = true;break;}}if(flag) {flag = false; break;}x--;}ret = max(ret, x*x + y*y);break;}}}return ret;}
};

 


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部