SIGIR 2019 开源论文 | 基于图神经网络的协同过滤算法

作者丨纪厚业
单位丨北京邮电大学博士生
研究方向丨异质图神经网络,异质图表示学习和推荐系统

引言
协同过滤作为一种经典的推荐算法在推荐领域有举足轻重的地位。协同过滤(collaborative filtering)的基本假设是相似的用户会对物品展现出相似的偏好。总的来说,协同过滤模型主要包含两个关键部分:1)embedding,即如何将 user 和 item 转化为向量表示;2)interaction modeling,即如何基于 user 和 item 的表示来重建它们的历史交互。
传统协同过滤算法(如经典的矩阵分解和神经矩阵分解)本质还是给 user 和 item 初始化一个 embedding,然后利用交互信息来优化模型。它们并没有把交互信息编码进 embedding 中,所以这些 embedding 都是次优的。直观地理解,如果能将 user-item 的交互信息编码进 embedding 中,将提升 embedding 的表示能力进而提升模型的预测能力。本文的主要创新点在于利用二部图神经网络将 User-Item 的历史交互信息编码进 Embedding 进而提升推荐效果。更重要的是,本文显式地考虑 User-Item 之间的高阶连接性来进一步提升 embedding 的表示能力。

图 1 展示了一个 user-item 的二部图及 u1 的高阶连接性。u1 的高阶连接性表示 u1 通过长度大于 1 的路径连接到的节点。例如,u1 通过长度 l=2 的路径连接到 u2 和 u3,这代表 u1 的 2 阶连接性;u1 通过长度 l=3 的路径连接到 i4,i5,这代表 u1 的 3 阶连接性。需要注意的是,虽然 i4 和 i5 都是 u1 的 3 阶邻居,但是 i4 可以通过更多的路径连接到 u1,所以 i4 与 u1 的相似度更高。
模型
模型主要分为 3 个部分:1)Embedding Layer:将 user 和 item 的 ID 映射为向量表示;2)Embedding Propagation Layers:将初始的 user 和 item 表示基于图神经网络来更新;3)Prediction:基于更新后的 user 和 item 表示来进行预测。模型架构图见 Figure 2。
Embedding Layer这里对 User 和 Item 分别初始化相应的 Embedding Matrix,然后通过 User 或者 Item 的 ID 进行 Embedding Lookup 将它们映射到一个向量表示。


其中,
都是可学习的参数矩阵,
和
分别代表 u 和 i 的度。这里
可以理解为归一化系数。

上面的传播过程也可以写成矩阵的形式,这样在代码实现的时候可以高效的对节点 Embedding 进行更新。

其中,Model Prediction
模型的预测非常简单,将 L 阶的节点表示分别拼接起来作为最终的节点表示,然后通过内积进行预测。

![]()
实验
本文在 Gowalla、Yelp2018 和 Amazon-Book 上进行了大量实验来回答以下 3 个问题:和 state-of-the-art 的方法相比,NGCF 的效果如何?
模型对于超参数(如模型层数,dropout)的敏感性。
高阶连接性对于模型的影响。

本文的 baseline 主要可以分为两大类:非图神经网络的推荐算法(如 MF 和 CMN)和基于图神经网络的推荐算法(PinSage 和 GC-MC)。实验效果如 Table 2 所示:

可以看出,本文所提出的 NGCF 优势很明显,尤其是在 recall 上的提升均超过 10%。同时,作者还对数据进行了稀疏化并进一步验证来说明 NGCF 来稀疏数据上的优势。

从 Figure 4 可以看出,NGCF 在数据稀疏度较高的时候有明显优势,随着稀疏度的下降,NGCF 的优势越来越小甚至被 baseline 超过了。另外,作者验证了模型层数、卷积形式和 dropout 对 NGCF 的影响,具体见 Table 3、Table 4 和 Figure 5。




注意这里 MF 可以看做是 NGCF-0。可以看出,随着阶数的增加,相同颜色的节点更好的聚集在一起。也就是说,高阶连接性确实有助于学习 User 和 Item 的 Embedding。
结论
本文提出了基于图神经网络的协同过滤算法 NGCF,它可以显式地将 User-Item 的高阶交互编码进 Embedding 中来提升 Embedding 的表示能力进而提升整个推荐效果。
NGCF 的关键就在于 Embedding Propagation Layer 来学习 User 和 Item 的 Embedding,后面的预测部分只是简单的内积。可以说,NGCF 较好地解决了协同过滤算法的第一个核心问题。
另外,本文的 Embedding Propagation 实际上没有考虑邻居的重要性,如果可以像 Graph Attention Network 在传播聚合过程中考虑邻居重要性的差异,NGCF 的效果应该可以进一步提升。
参考文献
[1] http://staff.ustc.edu.cn/~hexn/slides/sigir19-ngcf-slides.pdf[2] https://github.com/xiangwang1223/neural_graph_collaborative_filtering

点击以下标题查看更多往期内容:
#投 稿 通 道#
让你的论文被更多人看到
如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。
总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。
PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学习心得或技术干货。我们的目的只有一个,让知识真正流动起来。
? 来稿标准:
• 稿件确系个人原创作品,来稿需注明作者个人信息(姓名+学校/工作单位+学历/职位+研究方向)
• 如果文章并非首发,请在投稿时提醒并附上所有已发布链接
• PaperWeekly 默认每篇文章都是首发,均会添加“原创”标志
? 投稿邮箱:
• 投稿邮箱:hr@paperweekly.site
• 所有文章配图,请单独在附件中发送
• 请留下即时联系方式(微信或手机),以便我们在编辑发布时和作者沟通
?
现在,在「知乎」也能找到我们了
进入知乎首页搜索「PaperWeekly」
点击「关注」订阅我们的专栏吧
关于PaperWeekly
PaperWeekly 是一个推荐、解读、讨论、报道人工智能前沿论文成果的学术平台。如果你研究或从事 AI 领域,欢迎在公众号后台点击「交流群」,小助手将把你带入 PaperWeekly 的交流群里。
▽ 点击 | 阅读原文 | 下载论文 & 源码
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
