关于理解middlebury提供的立体匹配代码后的精减

Middlebury立体匹配源码总结

优化方法

图像可否预处理

代价计算可否采用BT方式

可选代价计算方法

可否代价聚合

可否MinFilter优化原始代价

WTA-Box

可以

可以

AD/SD

可以,聚合尺寸可变,迭代次数1次

可以

WTA-Binomial

可以

可以

AD/SD

可以,聚合尺寸固定,迭代次数可变

不可以

WTA-Diffusion

可以

可以

AD/SD

可以,聚合尺寸固定,迭代次数可变

不可以

WTA-membrane

可以

可以

AD/SD

可以,聚合尺寸固定,迭代次数可变

不可以

WTA-Bayesian

可以

可以

AD/SD

可以,聚合尺寸固定,迭代次数可变

不可以

WTA-LASW

可以

可以

AD/SD

可以,聚合尺寸可变,迭代次数1次

不可以

SO

可以

可以

AD/SD

不可以

不可以

DP

可以

可以

AD/SD

不可以

不可以

GC

可以

可以

AD/SD

不可以

不可以

SA

可以

可以

AD/SD

不可以

不可以

BPAccel

可以

可以

AD/SD

不可以

不可以

BPSync

可以

可以

AD/SD

不可以

不可以



1. 主线函数

1.0 ComputeCorrespondence

void ComputeCorrespondence(){CShape sh = m_frame[frame_ref].input_image.Shape();//1.计算m_frame_xxx, m_disp_xxx, disp_step, disp_n, m_match_outside//只考虑disp_step==1的情况,所以可进行以下简化//且后文件将除m_disp_n外的所有m_frame_xxx和m_disp_xxx都去掉m_frame_diff = 1;// frame_match - frame_ref;m_frame_diff_sign = 1;// (m_frame_diff > 0) ? 1 : -1;m_disp_num = 1;// disp_step < 1.0f ? 1 : ROUND(disp_step);m_disp_den = 1;// disp_step < 1.0f ? ROUND(1.0 / disp_step) : 1;m_disp_step_inv = 1;// m_disp_den / (float)m_disp_num;m_disp_step = disp_step;// m_disp_num / (float)m_disp_den;m_disp_n = disp_n = disp_max-disp_min + 1;// int(m_disp_step_inv * (disp_max - disp_min)) + 1;//disp_step = m_disp_step;//disp_n = m_disp_n;// Special value for border matchesint worst_match = sh.nBands * ((match_fn == eSD) ? 255 * 255 : 255);int cutoff = (match_fn == eSD) ? match_max * match_max : abs(match_max);m_match_outside = __min(worst_match, cutoff);    // trim to cutoff//2.设置左右图像m_reference.ReAllocate(sh);CopyPixels(m_frame[frame_ref].input_image, m_reference);m_matching.ReAllocate(sh);CopyPixels(m_frame[frame_match].input_image, m_matching);//3.设置标准视差图像sh.nBands = 1;m_true_disparity.ReAllocate(sh);   // ground truthScaleAndOffset(m_frame[frame_ref].truth_image, m_true_disparity, 1.0f / disp_scale, disp_min);//4.生成浮点视差图像sh.nBands = 1;m_float_disparity.ReAllocate(sh);m_float_disparity.ClearPixels();//5.生成整型视差图像sh.nBands = 1;m_disparity.ReAllocate(sh);        // winning disparities//6.生成代价函数图像sh.nBands = m_disp_n;// number of disparity levelsm_cost.ReAllocate(sh);             // raw matching costs (# bands = # disparities)//if (evaluate_only){暂且略去}//7.执行算法clock_t time0 = clock();PreProcess();   // see StcPreProcess.cppRawCosts();     // see StcRawCosts.cppAggregate();    // see StcAggregate.cppOptimize();     // see StcOptimize.cppRefine();       // see StcRefine.cppclock_t time1 = clock();    // record end timetotal_time = (float)(time1 - time0) / (float)CLOCKS_PER_SEC;//8.生成并设置深度图像sh.nBands = 1;m_frame[frame_ref].depth_image.ReAllocate(sh);m_frame[frame_ref].depth_image.ClearPixels();      // set to 0 if we just reallocatedScaleAndOffset(m_float_disparity, m_frame[frame_ref].depth_image, disp_scale, -disp_min * disp_scale + 0.5);//9.CopyPixels(m_frame[frame_ref].input_image, m_reference);}
1.1 PreProcess

 void PreProcess()2     {3         for (int iter = 0; iter < preproc_blur_iter; iter++)4         {5             ConvolveSeparable(m_reference, m_reference, ConvolveKernel_121, ConvolveKernel_14641, 1.0f, 0.0f, 1, 1);6             ConvolveSeparable(m_matching, m_matching, ConvolveKernel_121, ConvolveKernel_14641, 1.0f, 0.0f, 1, 1);7         }8         //Currently, we only support iterated binomial blur, to clean up the images a little.9         //This should help sub-pixel fitting work better, by making image shifts closer to a Taylor series expansion,
10         //but will result in worse performance near discontinuity regions and in finely textured regions.
11         //Other potential pre-processing operations (currently not implemented),might include:
12         //(1)bias and gain normalization
13         //(2)histogram equalization (global or local)
14         //(3)rank statistics pre-processing
15     }

1.2 RawCosts

void RawCosts(){CShape sh = m_reference.Shape();int cols = sh.width;int rows = sh.height;int cn = sh.nBands;fprintf(stderr, match_fn == eAD ? "\nmatch_fn=AD, match_max=%d\n" : (match_fn == eSD ? "\nmatch_fn=SD, match_max=%d\n" : "\nmatch_fn=unknown, match_max=%d\n"), match_max);int cutoff = (match_fn == eSD) ? match_max * match_max : abs(match_max);for (int d = 0; d < disp_n; d++){int disp = -(disp_min + d);//计算取不同视差值的代价(一个视差值对应一个cost的通道)for (int i = 0; i < rows; i++){uchar *ref = &m_reference.Pixel(0, i, 0);uchar *match = &m_matching.Pixel(0, i, 0);float *cost = &m_cost.Pixel(0, i, d);for (int j = 0, jj = 0; j < cols; j++, jj += disp_n)//m_cost的通道数为disp_n{//1.肯定为错误匹配则代价无穷大if ((j + disp) < 0){cost[jj] = m_match_outside;continue;}//2.否则计算AD代价或SD代价int  diff_sum = 0;//多通道则是所有通道代价之和uchar *pixel0 = &ref[j*cn];uchar *pixel1 = &match[(j + disp)*cn];for (int k = 0; k < cn; k++){int diff1 = (int)pixel1[k] - (int)pixel0[k];int diff2 = (match_fn == eSD) ? diff1 * diff1 : abs(diff1);diff_sum = diff_sum + diff2;}cost[jj] = __min(diff_sum, cutoff);}}}}

1.2.1 PadCosts

void PadCosts(){    // fill the outside parts of the DSICShape sh = m_cost.Shape();int cols = sh.width;int rows = sh.height;for (int d = 0; d < m_disp_n; d++){int disp = -(disp_min + d);for (int i = 0; i < rows; i++){float* cost = &m_cost.Pixel(0, i, d);for (int j = 0, jj = 0; j < cols; j++, jj += disp_n)//m_cost的通道数为disp_ncost[jj] = ((j + disp) < 0) ? m_match_outside : cost[jj];}}}

1.3 Aggregate

void Aggregate(){// Save the raw matching costs in m_cost0;CopyPixels(m_cost, m_cost0);//1.Perform given number of iteration stepsfor (int iter = 0; iter < aggr_iter; iter++)switch (aggr_fn){case eBox:if (verbose == eVerboseSummary && iter < 1) fprintf(stderr, ", box=%d", aggr_window_size);BoxFilter(m_cost, m_cost, aggr_window_size, aggr_window_size, true);//可以用cv::boxFilter()代替break;case eASWeight:if (verbose == eVerboseSummary && iter < 1) fprintf(stderr, ", AdaptiveWeight (box=%d gamma_p=%g gamma_s=%g color_space=%d )", aggr_window_size, aggr_gamma_proximity, aggr_gamma_similarity, aggr_color_space);LASW(m_cost,        // initial matching costm_cost,            // aggregated matching costm_reference,        // reference imagem_matching,        // target imageaggr_window_size,    // window size - xaggr_window_size,    // window size - yaggr_gamma_proximity,    // gamma_paggr_gamma_similarity,    // gamma_caggr_color_space,    // color spaceaggr_iter            // iteration number (aggregation));iter = aggr_iter;break;default:throw CError("CStereoMatcher::Aggregate(): unknown aggregation function");}//2.Simulate the effect of shiftable windowsif (aggr_minfilter > 1)    MinFilter(m_cost, m_cost, aggr_minfilter, aggr_minfilter);//3.Pad the outside costs back up to bad valuesPadCosts();}

1.3.1 MinFilter

 {
2         //略
3     }

1.4 Optimize

void Optimize(){// Select the best matches using local or global optimization// set up the smoothness cost function for the methods that need itif (opt_fn == eDynamicProg || opt_fn == eScanlineOpt || opt_fn == eGraphCut || opt_fn == eSimulAnnl || opt_fn == eBPAccel || opt_fn == eBPSync){if (verbose == eVerboseSummary) fprintf(stderr, ", smooth=%g, grad_thres=%g, penalty=%g", opt_smoothness, opt_grad_thresh, opt_grad_penalty);SmoothCostAll();}switch (opt_fn){case eNoOpt:      // no optimization (pass through input depth maps)   if (verbose == eVerboseSummary)  fprintf(stderr, ", NO OPT");break;case eWTA:        // winner-take-all (local minimum)       if (verbose == eVerboseSummary) fprintf(stderr, ", WTA");OptWTA();break;case eGraphCut:     // graph-cut global minimizationif (verbose == eVerboseSummary)   fprintf(stderr, ", GC");OptWTA();       // get an initial labelling (or just set to 0???)OptGraphCut();  // run the optimizationbreak;case eDynamicProg:  // scanline dynamic programming    if (verbose == eVerboseSummary)    fprintf(stderr, ", DP (occl_cost=%d)", opt_occlusion_cost);OptDP();        // see StcOptDP.cppbreak;case eScanlineOpt:  // scanline optimization    if (verbose == eVerboseSummary)  fprintf(stderr, ", SO");OptSO();       // see StcOptSO.cppbreak;case eSimulAnnl:  // simulated annealingif (verbose == eVerboseSummary)  fprintf(stderr, ", SA");OptWTA();           // initialize to reasonable starting point (for low-T gradient descent)OptSimulAnnl();    // see StcSimulAnn.cppbreak;case eBPAccel:OptBP();  // run the optimizationbreak;case eBPSync:OptBPSync();  // run the optimizationbreak;default:throw CError("CStereoMatcher::Optimize(): unknown optimization function");}if (final_energy < 0.0f){if (!m_cost.Shape().SameIgnoringNBands(m_smooth.Shape()))SmoothCostAll();float finalEd, finalEn;CStereoMatcher::ComputeEnergy(finalEd, finalEn);final_energy = finalEd + finalEn;}}

1.4.1 SmoothCostOne

float SmoothCostOne(uchar *pixel1, uchar *pixel2, int cn){float tmp = 0.0;for (int k = 0; k < cn; k++){float tm = int(pixel1[k]) - int(pixel2[k]);tmp += tm*tm;}tmp = tmp/(cn - (cn > 1));//归一化为单通道, ppm图像的通道为4tmp = sqrt(tmp);return (tmp < opt_grad_thresh) ? (opt_smoothness*opt_grad_penalty) : opt_smoothness;}

1.4.2 SmoothCostAll

void SmoothCostAll(){    //calculate smoothness costs for DP and GCCShape sh = m_cost.m_shape;sh.nBands = 2;//分为垂直和水平平滑代价m_smooth.ReAllocate(sh, false);int rows = sh.height;int cols = sh.width;int cn = m_reference.m_shape.nBands;char *im_data0_cr = m_reference.m_memStart;char *im_data0_dw = im_data0_cr + m_reference.m_rowSize;char *smooth_data0 = m_smooth.m_memStart;for (int i = 0; i < rows; i++, im_data0_cr += m_reference.m_rowSize, im_data0_dw += m_reference.m_rowSize, smooth_data0 += m_smooth.m_rowSize){uchar *im_data1_cr = (uchar*)im_data0_cr;uchar *im_data1_dw = (uchar*)((i < rows - 1) ? im_data0_dw : im_data0_cr);float *smooth_data1 = (float*)smooth_data0;for (int j = 0; j < cols; j++, im_data1_cr += cn, im_data1_dw += cn, smooth_data1 += 2){smooth_data1[0] = (i < rows - 1) ? SmoothCostOne(im_data1_cr, im_data1_dw, cn) : 0;smooth_data1[1] = (j < cols - 1) ? SmoothCostOne(im_data1_cr, im_data1_cr + cn, cn) : 0;}}}

1.4.3 ComputeEnergy

static void ComputeEnergy(CFloatImage& m_cost, CFloatImage& m_smooth, CIntImage& m_disparity, float& dataEnergy, float& smoothEnergy){int cols = m_cost.m_shape.width;int rows = m_cost.m_shape.height;int cn1 = m_cost.m_shape.nBands;int cn2 = m_smooth.m_shape.nBands;float sum1 = 0.0f;float sum2 = 0.0f;char *disp_data0_cr = m_disparity.m_memStart;char *disp_data0_dw = disp_data0_cr + m_disparity.m_rowSize;char *datacost_data0 = m_cost.m_memStart;char *smoothcost_data0 = m_smooth.m_memStart;for (int i = 0; i < rows; i++, disp_data0_cr += m_disparity.m_rowSize, disp_data0_dw += m_disparity.m_rowSize, datacost_data0 += m_cost.m_rowSize, smoothcost_data0 += m_smooth.m_rowSize){int *disp_data1_cr = (int*)disp_data0_cr;int *disp_data1_dw = (int*)((i < rows - 1) ? disp_data0_dw : disp_data0_cr);float *datacost_data1 = (float*)datacost_data0;float *smoothcost_data1 = (float*)smoothcost_data0;for (int j = 0; j < cols; j++, datacost_data1 += cn1, smoothcost_data1 += cn2){int d = disp_data1_cr[j];sum1 = sum1 + datacost_data1[d];sum2 = sum2 + ((i < rows - 1 && d != disp_data1_dw[j]) ? smoothcost_data1[0] : 0);//水平平滑代价sum2 = sum2 + ((j < cols - 1 && d != disp_data1_cr[j + 1]) ? smoothcost_data1[1] : 0);//垂直平滑代价}}dataEnergy = sum1;smoothEnergy = sum2;//float GC_scale = (1 << 30) / (256 * 256);//GC_scale = (1 << 30) / (sum1 + sum2);}

1.5 Refine

void Refine(){    //Refine the matching disparity to get a sub-pixel matchif (opt_fn != eNoOpt) ScaleAndOffset(m_disparity, m_float_disparity, disp_step, disp_min);//无优化则跳过if (refine_subpix == 0 || disp_n < 3)  return; //不进行提纯for (int i = 0; i < m_cost.m_shape.height; i++){float *cost = &m_cost.Pixel(0, i, 0);int   *disp = &m_disparity.Pixel(0, i, 0);float *fdisp = &m_float_disparity.Pixel(0, i, 0);for (int j = 0; j < m_cost.m_shape.width; j++, cost += disp_n){//Get minimum, but offset by 1 from endsint d_min = disp[j] + (disp[j] == 0) - (disp[j] == disp_n - 1);//Compute the equations of the parabolic fitfloat c0 = cost[d_min - 1];        //a*(d-1)^2+b*(d-1)+c=c0float c1 = cost[d_min];            //a*(d  )^2+b*(d  )+c=c1float c2 = cost[d_min + 1];        //a*(d+1)^2+b*(d+1)+c=c2float a = 0.5 * (c0 - 2.0 * c1 + c2);    //解得a=c2-2*c1+c0, 对称轴=-b/2*a=d-(c2-c0)/(4*a)float b = 0.5 * (c2 - c0);if (a <= 0.0 || a < 0.5 * fabs(b))    continue;//Solve for minimumfloat x0 = -0.5 * b / a;float d_new = m_disp_step * (d_min + x0) + disp_min;fdisp[j] = d_new;}}}
2.代价聚合
2.1 BoxFiter

1 {
2     //与cv::boxFilter一致
3 }

2.2 LASW

void LASW(CFloatImage &srcCost, CFloatImage &dstCost, CByteImage &im0, CByteImage &im1, int xWidth, int yWidth, float proximity, float similarity, int color_space, int diff_iter)
{int frm_total = im0.m_shape.width*im0.m_shape.height;int win_radius = (int)(xWidth / 2.0);int win_total = xWidth*yWidth;//0.分配所需空间double **Lab0 = new double *[frm_total];double **Lab1 = new double *[frm_total];float **rawCostf = new float *[frm_total];float **dstCostf = new float *[frm_total];float **sw0f = new float *[frm_total];float **sw1f = new float *[frm_total];for (int i = 0; i < frm_total; i++){Lab0[i] = new double[3];Lab1[i] = new double[3];rawCostf[i] = new float[srcCost.m_shape.nBands];dstCostf[i] = new float[srcCost.m_shape.nBands];sw0f[i] = new float[win_total];sw1f[i] = new float[win_total];}//1.计算Lab图像并for (int i = 0, index = 0; i

2.2.1 RGB2Lab

void RGB2Lab(double &R, double &G, double &B, double &L, double &a, double &b)
{double X = 0.412453*R + 0.357580*G + 0.189423*B;double Y = 0.212671*R + 0.715160*G + 0.072169*B;double Z = 0.019334*R + 0.119193*G + 0.950227*B;double Xo = 244.66128;double Yo = 255.0;double Zo = 277.63227;double tm1 = X / Xo; tm1 = (tm1 > 0.008856) ? pow(tm1, 0.333333333) : (7.787*tm1 + 0.137931034);double tm2 = Y / Yo; tm2 = (tm2 > 0.008856) ? pow(tm2, 0.333333333) : (7.787*tm2 + 0.137931034);double tm3 = Z / Zo; tm3 = (tm3 > 0.008856) ? pow(tm3, 0.333333333) : (7.787*tm3 + 0.137931034);L = 116 * tm2 - 16;a = 500 * (tm1 - tm2);b = 200 * (tm2 - tm3);
}

2.2.2 calcASW

void calcASW(double **Lab, float **SW, double proximity, double similarity, int win_radius, int cols, int rows)
{int frm_total = cols*rows;int win_total = (2 * win_radius + 1)*(2 * win_radius + 1);//0.先清零for (int i = 0; i= rows)//此行领域点越界,所以对应的权重都为0{for (int x = -win_radius; x <= win_radius; x++, k++)SW[index][k] = 0;//可用menset加快处理continue;}for (int x = -win_radius; x <= win_radius; x++, k++){if (SW[index][k] > 0)    //之前的循环已经计算则无需再计算continue;int jj = j + x;if (jj < 0 || jj >= cols)//此领域点越界,所以对应的权重为0{SW[index][k] = 0;continue;}double L1 = Lab[index][0];double a1 = Lab[index][1];double b1 = Lab[index][2];int index1 = ii*cols + jj;//领域点坐标double L2 = Lab[index1][0];double a2 = Lab[index1][1];double b2 = Lab[index1][2];double weight_prox = exp(-sqrt((double)(y*y + x*x)) / proximity);double weight_simi = exp(-sqrt((L1 - L2)*(L1 - L2) + (a1 - a2)*(a1 - a2) + (b1 - b2)*(b1 - b2)) / similarity);SW[index][k] = (float)(weight_prox*weight_simi);SW[index1][win_total - 1 - k] = SW[index][k];//得到A相对O权重的同时也得到O相对A权重}}
}

2.2.3 aggrASW

void aggrASW(float **SW0, float **SW1, float **rawCost, float **dstCost, int cn, int win_radius, int cols, int rows)
{for (int i = 0, index = 0; i= cols) index1 = index1 - cols;index1 = i*cols + index1;//右图像上匹配点的坐标double weight_sum = 0;double cost_sum = 0;for (int y = -win_radius, k = 0; y <= win_radius; y++)//k表示第k个领域点{int ii = i + y;if (ii<0) ii = ii + rows;if (ii >= rows) ii = ii - rows;for (int x = -win_radius; x <= win_radius; x++, k++){int jj = j + x;if (jj<0) jj = cols + jj;else if (jj >= cols) jj = jj - cols;double weight = SW0[index][k] * SW1[index1][k];//权重之积weight_sum = weight_sum + weight;int index_k = ii*cols + jj;//index_k表示第k个领域点cost_sum = cost_sum + rawCost[index_k][d] * weight;}}dstCost[index][d] = (float)(cost_sum / weight_sum);}
}

3.视差优化
3.1 OptWTA

void CStereoMatcher::OptWTA()
{CShape sh = m_cost.Shape();int cols = sh.width;int rows = sh.height;for (int i = 0; i < rows; i++){float* cost = &m_cost.Pixel(0, i, 0);int*   disp = &m_disparity.Pixel(0, i, 0);for (int j = 0; j < cols; j++, cost += disp_n)//m_cost的通道数为disp_n{int best_disp = 0;float best_cost = cost[0];for (int d = 1; d < disp_n; d++)if (cost[d] < best_cost){best_cost = cost[d];best_disp = d;}disp[j] = best_disp;}}
}

3.2 OptSO

void OptSO(){    // scanline optimizationint cols = m_cost.m_shape.width;int rows = m_cost.m_shape.height;int endcol = cols - 1;int rowElem = cols*disp_n;char *datacost_data0 = m_cost.m_memStart;char *smoothcost_data0 = m_smooth.m_memStart;char *disparity_data0 = m_disparity.m_memStart;float *sumcost_data0 = (float*)malloc(rowElem*sizeof(float));//存储每一列的每一视差(通道)的最优结果int *position_data0 = (int*)malloc(rowElem*sizeof(int));//存储每一列取得最优结果时对应的前一列哪个索引的视差(通道)for (int i = 0; i < rows; i++, datacost_data0 += m_cost.m_rowSize, smoothcost_data0 += m_smooth.m_rowSize, disparity_data0 += m_disparity.m_rowSize)//对每一行{float *datacost_data1 = (float*)datacost_data0;float *smoothcost_data1 = (float*)smoothcost_data0;int *position_data1 = position_data0;float *sumcost_data1 = sumcost_data0;//1.初始化第一列for (int d = 0; d < disp_n; d++){position_data1[d] = -1;sumcost_data1[d] = datacost_data1[d];}datacost_data1 += disp_n; position_data1 += disp_n; sumcost_data1 += disp_n;//定位第二列//2.用动态归划处理后续列for (int j = 1; j < cols; j++, datacost_data1 += disp_n, position_data1 += disp_n, sumcost_data1 += disp_n, smoothcost_data1 += 2)//对每一列{for (int d1 = 0; d1 < disp_n; d1++)//对每一通道(视差){sumcost_data1[d1] = COST_MAX; //当前列当前通道的最小匹配代价position_data1[d1] = -1; //最小匹配代价对应前一列的哪个通道(视差)                    for (int d0 = 0; d0 < disp_n; d0++)//对前一列的每一通道(视差){float tm = datacost_data1[d1]; //当前列当前通道(视差)的原始代价tm = tm + sumcost_data1[d0 - disp_n];//前一列的每一通道(视差)的最小匹配代价tm = (d0 != d1) ? (tm + smoothcost_data1[1]) : tm;//两通道(视差)间的平滑代价(第二通道才是水平方向的平滑代价)if (tm < sumcost_data1[d1]){sumcost_data1[d1] = tm;position_data1[d1] = d0;}}}}//3.在尾列查看最优结果(指针来源与前面不相关)   position_data1 -= disp_n;sumcost_data1 -= disp_n;float best_cost = COST_MAX;int best_disp = 0;for (int d = 0; d < disp_n; d++)if (sumcost_data1[d] < best_cost){best_cost = sumcost_data1[d];best_disp = d;}//4.回溯(从尾列到首列)int *disparity_data1 = (int*)disparity_data0;for (int x = endcol; x >= 0; x--, position_data1 -= disp_n){disparity_data1[x] = best_disp;best_disp = position_data1[best_disp];}}free(sumcost_data0);free(position_data0);}

3.3 OptDP

void OptDP()       {    //dynamic programming stereo (Intille and Bobick, no GCPs)float ocl = opt_occlusion_cost;float ocr = opt_occlusion_cost;int occ = -9999; // marker for occluded pixels (use 0 if you want to leave occluded pixels black)int cols = m_cost.m_shape.width;int rows = m_cost.m_shape.height;int state0[7] = { 0, 0, 1, 1, 0, 2, 2 };//前一点的状态int state1[7] = { 0, 1, 1, 0, 2, 2, 0 };//当前点的状态int colElem = disp_n * 3;//每点的基元数=通道数*状态数int left = -colElem, diag = -colElem - 3, up = 3;int steps[7] = { left, left, diag, diag, up, up, left };//不同状态时最优的前一点的位置与当前点的跨度  int dleft = -disp_n, ddiag = -disp_n - 1, dup = 1;int disp_step[7] = { dleft, dleft, ddiag, ddiag, dup, dup, dleft };//不同状态时视差的跨度int border0[7] = { 0, 0, 1, 1, 0, 0, 0 }; //视差为0时没有左下角的前一点int border1[7] = { 0, 0, 0, 0, 1, 1, 0 }; //视差为max没有同列的上一点int rowElem = cols * colElem;char *datacost_data0 = m_cost.m_memStart;char *smoothcost_data0 = m_smooth.m_memStart;char *disparity_data0 = m_disparity.m_memStart + (cols - 1) * m_disparity.m_pixSize;//视差是从最后列开始计算的int *position_data0 = (int*)malloc(rowElem*sizeof(int));//存储每一列取得最优结果时对应的前一列哪个索引的视差(通道)float *sumcost_data0 = (float*)malloc(rowElem*sizeof(float));//存储每一列的每一视差(通道)的最优结果    int *position_data1_endlcol = position_data0 + (cols - 1)*colElem;float *sumcost_data1_endcol = sumcost_data0 + (cols - 1)*colElem;for (int i = 0; i < rows; i++, datacost_data0 += m_cost.m_rowSize, smoothcost_data0 += m_smooth.m_rowSize, disparity_data0 += m_disparity.m_rowSize){float *datacost_data1 = (float*)datacost_data0;float *smoothcost_data1 = (float*)smoothcost_data0;int *position_data1 = (int*)position_data0;float *sumcost_data1 = (float*)sumcost_data0;//1.初始化第一列(每列有disp_n个通道(视差)而每个视差又有3个状态){float *datacost_data2 = datacost_data1;int *position_data2 = position_data1;float *sumcost_data2 = sumcost_data1;for (int d = 0; d < disp_n; d++, datacost_data2++, position_data2 += 3, sumcost_data2 += 3){    //强制第一个点是非遮挡的position_data2[0] = 0;position_data2[1] = -1;position_data2[2] = -1;sumcost_data2[0] = datacost_data2[0];sumcost_data2[1] = COST_MAX;sumcost_data2[2] = COST_MAX;}datacost_data1 += disp_n; position_data1 += colElem; sumcost_data1 += colElem;//定位到第二列}//2.用动态归划处理后续列for (int j = 1; j < cols; j++, datacost_data1 += disp_n, smoothcost_data1 += 2, position_data1 += colElem, sumcost_data1 += colElem)//对每一列{float *datacost_data2 = datacost_data1 + disp_n - 1;//先定位到第二列的最后一个通道,因为要从最后个通道开始处理float *smoothcost_data2 = smoothcost_data1;//平滑代价只与列相关而与通道无关int *position_data2 = position_data1 + colElem - 3;//先定位到第二列的最后一个通道,因为要从最后个通道开始处理float *sumcost_data2 = sumcost_data1 + colElem - 3;//从最后个通道开始处理是因为m→R和r→R时处理当前通道时要用到下一通道的数据for (int d1 = disp_n - 1; d1 >= 0; d1--, datacost_data2--, position_data2 -= 3, sumcost_data2 -= 3) //对每一通道(视差){sumcost_data2[0] = COST_MAX;//当前列当前通道第0状态的最小匹配代价sumcost_data2[1] = COST_MAX;//当前列当前通道第1状态的最小匹配代价sumcost_data2[2] = COST_MAX;//当前列当前通道第2状态的最小匹配代价position_data2[0] = -1; //第0状态最小匹配代价对应前一列的哪个通道(视差)position_data2[1] = -1; //第1状态最小匹配代价对应前一列的哪个通道(视差)position_data2[2] = -1; //第2状态最小匹配代价对应前一列的哪个通道(视差)for (int t = 0; t < 7; t++){if ((d1 == 0 && border0[t]) || (d1 == disp_n - 1 && border1[t]))  continue;//前一点不存在int pre_state = state0[t];int cur_state = state1[t];int pre_pos = steps[t] + pre_state;float tm = (cur_state == 1 ? ocl : (cur_state == 2 ? ocr : datacost_data2[0]));//当前列当前通道(视差)的原始代价tm = tm + sumcost_data2[pre_pos];//前一列的每一通道(视差)的每一状态的最小匹配代价tm = (t == 3 || t == 6) ? (tm + smoothcost_data2[1]) : tm;//平滑代价(从遮挡到匹配时)//第二通道才是水平方向的平滑代价if (tm < sumcost_data2[cur_state]){sumcost_data2[cur_state] = tm;position_data2[cur_state] = t;}}}}//3.在尾列查看最优结果(指针来源与前面不相关)   float best_cost = COST_MAX;int best_disp = 0;int best_state = 0;//只考虑左右图像都可见的状态{float *sumcost_data2 = sumcost_data1_endcol;//因为在遍历通道所以用data2for (int d = 0; d < disp_n; d++, sumcost_data2 += 3)if (sumcost_data2[best_state] < best_cost){best_cost = sumcost_data2[best_state];best_disp = d;}}//4.回溯(从尾列到首列)(指针来源与前面不相关)position_data1 = position_data1_endlcol + best_disp * 3 + best_state;//因为在遍历列所以用data1int *disparity_data1 = (int*)disparity_data0;while (position_data1 >= position_data0){int pos = *position_data1;int current_state = state1[pos];int prev_state = state0[pos];*disparity_data1 = (current_state == 0) ? best_disp : occ;int stride = steps[pos] - current_state + prev_state;position_data1 += stride;best_disp += disp_step[pos];if (best_disp < 0){best_disp += disp_n;disparity_data1--;}}}free(sumcost_data0);free(position_data0);//填充遮挡点(可单独写成函数)if (occ != 0){char *disp_data0 = m_disparity.m_memStart;for (int i = 0; i < rows; i++, disp_data0 += m_disparity.m_rowSize){int *disp_data1 = (int*)disp_data0;//找到第一个非遮掩点int nonocc;for (int j = 0; j < cols; j++)if (disp_data1[j] != occ){nonocc = disp_data1[j];break;}//除最左边的遮挡点外用与之右相邻的非遮挡点填充外, 其余遮挡点都用与之左相邻的非遮挡点填充for (int j = 0; j < cols; j++){int d = disp_data1[j];if (d == occ)disp_data1[j] = nonocc;elsenonocc = d;}}}}

8.杂项函数
8.1 BirchfieldTomasiMinMax

void BirchfieldTomasiMinMax(int* buffer, int* min, int* max, int cols, int cn)
{int cur, pre, nex;//第一个值cur = buffer[0];pre = (buffer[0] + buffer[0] + 1) / 2;nex = (buffer[0] + buffer[1] + 1) / 2;min[0] = __min(cur, __min(pre, nex));max[0] = __max(cur, __max(pre, nex));//中间的值for (int i = 1; i < cols - 1; i++){cur = buffer[i];pre = (buffer[i] + buffer[i - 1] + 1) / 2;nex = (buffer[i] + buffer[i + 1] + 1) / 2;min[i] = __min(cur, __min(pre, nex));max[i] = __max(cur, __max(pre, nex));}//最后个值cur = buffer[cols - 1];pre = (buffer[cols - 2] + buffer[cols - 1] + 1) / 2;nex = (buffer[cols - 1] + buffer[cols - 1] + 1) / 2;min[cols - 1] = __min(cur, __min(pre, nex));max[cols - 1] = __max(cur, __max(pre, nex));
}

9. Image.h添加

(1)将所有private及protected成员变成public

(2)添加如下代码:


#include 
using namespace cv;//将所有权限改为publictemplate  Mat ImgToMat(CImageOf *src)
{Mat dst;const char *depth = src->m_pTI->name();if (strcmp(depth, "unsigned char") == 0){dst = Mat(src->m_shape.height, src->m_shape.width, CV_8UC(src->m_shape.nBands));for (int k = 0; k < src->m_shape.nBands; k++)for (int i = 0; i < src->m_shape.height; i++)for (int j = 0; j < src->m_shape.width; j++)*((unsigned char*)(dst.data + i*dst.step + j*dst.elemSize() + k*dst.elemSize1())) = *((unsigned char*)(src->m_memStart + i*src->m_rowSize + j*src->m_pixSize + k*src->m_bandSize));}if (strcmp(depth, "char") == 0){dst = Mat(src->m_shape.height, src->m_shape.width, CV_8SC(src->m_shape.nBands));for (int k = 0; k < src->m_shape.nBands; k++)for (int i = 0; i < src->m_shape.height; i++)for (int j = 0; j < src->m_shape.width; j++)*((char*)(dst.data + i*dst.step + j*dst.elemSize() + k*dst.elemSize1())) = *((char*)(src->m_memStart + i*src->m_rowSize + j*src->m_pixSize + k*src->m_bandSize));}if (strcmp(depth, "unsigned short") == 0){dst = Mat(src->m_shape.height, src->m_shape.width, CV_16UC(src->m_shape.nBands));for (int k = 0; k < src->m_shape.nBands; k++)for (int i = 0; i < src->m_shape.height; i++)for (int j = 0; j < src->m_shape.width; j++)*((unsigned short*)(dst.data + i*dst.step + j*dst.elemSize() + k*dst.elemSize1())) = *((unsigned short*)(src->m_memStart + i*src->m_rowSize + j*src->m_pixSize + k*src->m_bandSize));}if (strcmp(depth, "short") == 0){dst = Mat(src->m_shape.height, src->m_shape.width, CV_16SC(src->m_shape.nBands));for (int k = 0; k < src->m_shape.nBands; k++)for (int i = 0; i < src->m_shape.height; i++)for (int j = 0; j < src->m_shape.width; j++)*((short*)(dst.data + i*dst.step + j*dst.elemSize() + k*dst.elemSize1())) = *((short*)(src->m_memStart + i*src->m_rowSize + j*src->m_pixSize + k*src->m_bandSize));}if (strcmp(depth, "float") == 0){dst = Mat(src->m_shape.height, src->m_shape.width, CV_32FC(src->m_shape.nBands));for (int k = 0; k < src->m_shape.nBands; k++)for (int i = 0; i < src->m_shape.height; i++)for (int j = 0; j < src->m_shape.width; j++)*((float*)(dst.data + i*dst.step + j*dst.elemSize() + k*dst.elemSize1())) = *((float*)(src->m_memStart + i*src->m_rowSize + j*src->m_pixSize + k*src->m_bandSize));}if (strcmp(depth, "int") == 0){dst = Mat(src->m_shape.height, src->m_shape.width, CV_32SC(src->m_shape.nBands));for (int k = 0; k < src->m_shape.nBands; k++)for (int i = 0; i < src->m_shape.height; i++)for (int j = 0; j < src->m_shape.width; j++)*((int*)(dst.data + i*dst.step + j*dst.elemSize() + k*dst.elemSize1())) = *((int*)(src->m_memStart + i*src->m_rowSize + j*src->m_pixSize + k*src->m_bandSize));}if (strcmp(depth, "double") == 0){dst = Mat(src->m_shape.height, src->m_shape.width, CV_64FC(src->m_shape.nBands));for (int k = 0; k < src->m_shape.nBands; k++)for (int i = 0; i < src->m_shape.height; i++)for (int j = 0; j < src->m_shape.width; j++)*((double*)(dst.data + i*dst.step + j*dst.elemSize() + k*dst.elemSize1())) = *((double*)(src->m_memStart + i*src->m_rowSize + j*src->m_pixSize + k*src->m_bandSize));}return dst;
}template  CImageOf MatToImg(Mat* src)
{CImageOf dst;CShape shape(src->cols, src->rows, src->channels());dst.ReAllocate(shape);const char *depth = dst.m_pTI->name();if (strcmp(depth, "unsigned char") == 0){for (int k = 0; k < dst.m_shape.nBands; k++)for (int i = 0; i < dst.m_shape.height; i++)for (int j = 0; j < dst.m_shape.width; j++)*((unsigned char*)(dst.m_memStart + i*dst.m_rowSize + j*dst.m_pixSize + k*dst.m_bandSize)) = *((unsigned char*)(src->data + i*src->step + j*src->elemSize() + k*src->elemSize1()));}if (strcmp(depth, "char") == 0){for (int k = 0; k < dst.m_shape.nBands; k++)for (int i = 0; i < dst.m_shape.height; i++)for (int j = 0; j < dst.m_shape.width; j++)*((char*)(dst.m_memStart + i*dst.m_rowSize + j*dst.m_pixSize + k*dst.m_bandSize)) = *((char*)(src->data + i*src->step + j*src->elemSize() + k*src->elemSize1()));}if (strcmp(depth, "unsigned short") == 0){for (int k = 0; k < dst.m_shape.nBands; k++)for (int i = 0; i < dst.m_shape.height; i++)for (int j = 0; j < dst.m_shape.width; j++)*((unsigned short*)(dst.m_memStart + i*dst.m_rowSize + j*dst.m_pixSize + k*dst.m_bandSize)) = *((unsigned short*)(src->data + i*src->step + j*src->elemSize() + k*src->elemSize1()));}if (strcmp(depth, "short") == 0){for (int k = 0; k < dst.m_shape.nBands; k++)for (int i = 0; i < dst.m_shape.height; i++)for (int j = 0; j < dst.m_shape.width; j++)*((short*)(dst.m_memStart + i*dst.m_rowSize + j*dst.m_pixSize + k*dst.m_bandSize)) = *((short*)(src->data + i*src->step + j*src->elemSize() + k*src->elemSize1()));}if (strcmp(depth, "float") == 0){for (int k = 0; k < dst.m_shape.nBands; k++)for (int i = 0; i < dst.m_shape.height; i++)for (int j = 0; j < dst.m_shape.width; j++)*((float*)(dst.m_memStart + i*dst.m_rowSize + j*dst.m_pixSize + k*dst.m_bandSize)) = *((float*)(src->data + i*src->step + j*src->elemSize() + k*src->elemSize1()));}if (strcmp(depth, "int") == 0){for (int k = 0; k < dst.m_shape.nBands; k++)for (int i = 0; i < dst.m_shape.height; i++)for (int j = 0; j < dst.m_shape.width; j++)*((int*)(dst.m_memStart + i*dst.m_rowSize + j*dst.m_pixSize + k*dst.m_bandSize)) = *((int*)(src->data + i*src->step + j*src->elemSize() + k*src->elemSize1()));}if (strcmp(depth, "double") == 0){for (int k = 0; k < dst.m_shape.nBands; k++)for (int i = 0; i < dst.m_shape.height; i++)for (int j = 0; j < dst.m_shape.width; j++)*((double*)(dst.m_memStart + i*dst.m_rowSize + j*dst.m_pixSize + k*dst.m_bandSize)) = *((double*)(src->data + i*src->step + j*src->elemSize() + k*src->elemSize1()));}return dst;
}template  void saveXML(string name, CImageOf* src)
{Mat dst = ImgToMat(src);FileStorage fs;fs.open("./../TestData/" + name, FileStorage::WRITE);fs << "mat" << dst;fs.release();
}template  void saveXML(string name, CImageOf* src, int count)
{vector dst;for (int i = 0; i(&src[i]));FileStorage fs;fs.open("./../TestData/" + name, FileStorage::WRITE);fs << "vectorMat" << dst;fs.release();
}



本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部