【算法篇】——java五大经典排序算法(小郭简化版)

目录

🌞(一)快速排序

 1.1 基本思想

1.2 算法描述

1.3  动图演示

 1.4  代码实现

🌞(二)冒泡排序

2.1 算法思想

2.2  算法描述

 2.3 动图演示

 2.4 代码实现

2.5  算法分析

🌞(三)希尔排序

3.1 算法思想

3.2 算法描述

3.3 过程演示

3.4 代码实现

3.5 算法分析

🌞(四)堆排序

4.1 基本思想

4.2 算法描述

4.3 动图演示

4.4 代码实现

  4.5 算法分析

🌞(五)插入排序

5.1 算法思想

5.2 算法描述

5.3 动图演示

5.4 代码实现

5.5 算法分析


🍺🍺哈喽,大家好丫,你们的小郭子又来啦 ~

🌞今天我们继续聊一聊金典的【排序算法】问题。(嘻嘻嘻)

话不多说,直接上干货,嘻嘻嘻 ~

🌞(一)快速排序


 1.1 基本思想

通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

1.2 算法描述

快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描述如下:


步骤1:从数列中挑出一个元素,称为 “基准”(pivot );


步骤2:重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;


步骤3:递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。


1.3  动图演示

 
1.4  代码实现

/*** 快速排序方法* @param array* @param start* @param end* @return*/public static int[] QuickSort(int[] array, int start, int end) {if (array.length < 1 || start < 0 || end >= array.length || start > end) return null;int smallIndex = partition(array, start, end);if (smallIndex > start)QuickSort(array, start, smallIndex - 1);if (smallIndex < end)QuickSort(array, smallIndex + 1, end);return array;}/*** 快速排序算法——partition* @param array* @param start* @param end* @return*/public static int partition(int[] array, int start, int end) {int pivot = (int) (start + Math.random() * (end - start + 1));int smallIndex = start - 1;swap(array, pivot, end);for (int i = start; i <= end; i++)if (array[i] <= array[end]) {smallIndex++;if (i > smallIndex)swap(array, i, smallIndex);}return smallIndex;}/*** 交换数组内两个元素* @param array* @param i* @param j*/public static void swap(int[] array, int i, int j) {int temp = array[i];array[i] = array[j];array[j] = temp;}

🌞(二)冒泡排序

2.1 算法思想

冒泡排序 是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

2.2  算法描述

  • 步骤1: 比较相邻的元素。如果第一个比第二个大,就交换它们两个;
  • 步骤2: 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
  • 步骤3: 针对所有的元素重复以上的步骤,除了最后一个;
  • 步骤4: 重复步骤1~3,直到排序完成。

 2.3 动图演示

 2.4 代码实现

/*** 冒泡排序** @param array* @return*/public static int[] bubbleSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++)for (int j = 0; j < array.length - 1 - i; j++)if (array[j + 1] < array[j]) {int temp = array[j + 1];array[j + 1] = array[j];array[j] = temp;}return array;}

2.5  算法分析

  • 最佳情况:T(n) = O(n)
  • 最差情况:T(n) = O(n2)
  • 平均情况:T(n) = O(n2)

🌞(三)希尔排序

3.1 算法思想

 希尔排序是希尔(Donald Shell) 于1959年提出的一种排序算法。希尔排序也是一种插入排序,它是简单插入排序经过改进之后的一个更高效的版本,也称为缩小增量排序同时该算法是冲破O(n2)的第一批算法之一。它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序。

    希尔排序是把记录按下表的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。

3.2 算法描述

 我们来看下希尔排序的基本步骤,在此我们选择增量gap=length/2,缩小增量继续以gap = gap/2的方式,这种增量选择我们可以用一个序列来表示,{n/2,(n/2)/2…1},称为增量序列。

希尔排序的增量序列的选择与证明是个数学难题,我们选择的这个增量序列是比较常用的,也是希尔建议的增量,称为希尔增量,但其实这个增量序列不是最优的。此处我们做示例使用希尔增量。

    先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,具体算法描述:

步骤1:选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;


步骤2:按增量序列个数k,对序列进行k 趟排序;


步骤3:每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

你的图缺他就是你的一切好吗,他妈的是深度的dig阿芳吗,几十几十你

3.3 过程演示

3.4 代码实现

/*** 希尔排序** @param array* @return*/public static int[] ShellSort(int[] array) {int len = array.length;int temp, gap = len / 2;while (gap > 0) {for (int i = gap; i < len; i++) {temp = array[i];int preIndex = i - gap;while (preIndex >= 0 && array[preIndex] > temp) {array[preIndex + gap] = array[preIndex];preIndex -= gap;}array[preIndex + gap] = temp;}gap /= 2;}return array;}

3.5 算法分析

  • 最佳情况:T(n) = O(nlog2 n)
  • 最坏情况:T(n) = O(nlog2 n)
  • 平均情况:T(n) =O(nlog2n)

🌞(四)堆排序

4.1 基本思想

堆排序(Heapsort) 是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

4.2 算法描述


步骤1:将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;


步骤2:将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];


步骤3:由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。
   

4.3 动图演示

4.4 代码实现

//声明全局变量,用于记录数组array的长度;static int len;/*** 堆排序算法** @param array* @return*/public static int[] HeapSort(int[] array) {len = array.length;if (len < 1) return array;//1.构建一个最大堆buildMaxHeap(array);//2.循环将堆首位(最大值)与末位交换,然后在重新调整最大堆while (len > 0) {swap(array, 0, len - 1);len--;adjustHeap(array, 0);}return array;}/*** 建立最大堆** @param array*/public static void buildMaxHeap(int[] array) {//从最后一个非叶子节点开始向上构造最大堆//for循环这样写会更好一点:i的左子树和右子树分别2i+1和2(i+1)for (int i = (len/2- 1); i >= 0; i--) {adjustHeap(array, i);}}/*** 调整使之成为最大堆** @param array* @param i*/public static void adjustHeap(int[] array, int i) {int maxIndex = i;//如果有左子树,且左子树大于父节点,则将最大指针指向左子树if (i * 2 < len && array[i * 2] > array[maxIndex])maxIndex = i * 2 + 1;//如果有右子树,且右子树大于父节点,则将最大指针指向右子树if (i * 2 + 1 < len && array[i * 2 + 1] > array[maxIndex])maxIndex = i * 2 + 2; //如果父节点不是最大值,则将父节点与最大值交换,并且递归调整与父节点交换的位置。if (maxIndex != i) {swap(array, maxIndex, i);adjustHeap(array, maxIndex);}}

  4.5 算法分析

  • 最佳情况:T(n) = O(nlogn)
  • 最差情况:T(n) = O(nlogn)
  • 平均情况:T(n) = O(nlogn)

🌞(五)插入排序

5.1 算法思想

插入排序(Insertion-Sort) 的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入

插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
 

5.2 算法描述

一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:


步骤1: 从第一个元素开始,该元素可以认为已经被排序;


步骤2: 取出下一个元素,在已经排序的元素序列中从后向前扫描


步骤3: 如果该元素(已排序)大于新元素,将该元素移到下一位置


步骤4: 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;


步骤5: 将新元素插入到该位置后;


步骤6: 重复步骤2~5。  

5.3 动图演示

5.4 代码实现

   /*** 插入排序* @param array* @return*/public static int[] insertionSort(int[] array) {if (array.length == 0)return array;int current;for (int i = 0; i < array.length - 1; i++) {current = array[i + 1];int preIndex = i;while (preIndex >= 0 && current < array[preIndex]) {array[preIndex + 1] = array[preIndex];preIndex--;}array[preIndex + 1] = current;}return array;}

5.5 算法分析

  • 最佳情况:T(n) = O(n)
  • 最坏情况:T(n) = O(n2)
  • 平均情况:T(n) = O(n2)

🐳🌞好啦,今天的分享到这里就结束啦 ~

🐳觉得我分享的文章不错的话,可以关注一下哦,嘻嘻嘻


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部