python中extract函数_Python 数据处理必学的五个 Numpy 函数
在 reshape 函数中使用参数-1
Numpy 允许我们根据给定的新形状重塑矩阵,新形状应该和原形状兼容。有意思的是,我们可以将新形状中的一个参数赋值为-1。这仅仅表明它是一个未知的维度,我们希望 Numpy 来算出这个未知的维度应该是多少:Numpy 将通过查看数组的长度和剩余维度来确保它满足上述标准。
让我们来看以下例子:
a = np.array([[1, 2, 3, 4],
[5, 6, 7, 8]])
a.shape
(2, 4)
假设我们给定行参数为 1,列参数为-1,那么 Numpy 将计算出 reshape 后的列数为 8。
a.reshape(1,-1)
array([[1, 2, 3, 4, 5, 6, 7, 8]])
假设我们给定行参数为-1,列参数为 1,那么 Numpy 将计算出 reshape 后的行数为 8。
a.reshape(-1,1)
array([[1],
[2],
[3],
[4],
[5],
[6],
[7],
[8]])
下面的代码也是一样的道理。
a.reshape(-1,4)
array([[1, 2, 3, 4],
[5, 6, 7, 8]])a.reshape(-1,2)
array([[1, 2],
[3, 4],
[5, 6],
[7, 8]])a.reshape(2,-1)
array([[1, 2, 3, 4],
[5, 6, 7, 8]])a.reshape(4,-1)
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
