方向余弦阵

\qquad i b , j b , k b i_b,j_b,k_b ib,jb,kb b b b系坐标轴向的单位矢量, i i , j i , k i i_i,j_i,k_i ii,ji,ki i i i系坐标轴向的单位矢量,那么两坐标系间的基变换公式可表示为: { i b = ( i b ⋅ i i ) i i + ( i b ⋅ j i ) j i + ( i b ⋅ k i ) k i j b = ( j b ⋅ i i ) i i + ( j b ⋅ j i ) j i + ( j b ⋅ k i ) k i k b = ( k b ⋅ i i ) i i + ( k b ⋅ j i ) j i + ( k b ⋅ k i ) k i (1) \begin{cases}i_b &=(i_b\cdot i_i)i_i+(i_b\cdot j_i)j_i+(i_b\cdot k_i)k_i \\ j_b &=(j_b\cdot i_i)i_i+(j_b\cdot j_i)j_i+(j_b\cdot k_i)k_i \\ k_b &=(k_b\cdot i_i)i_i+(k_b\cdot j_i)j_i+(k_b\cdot k_i)k_i \\ \end{cases} \tag{1} ibjbkb=(ibii)ii+(ibji)ji+(ibki)ki=(jbii)ii+(jbji)ji+(jbki)ki=(kbii)ii+(kbji)ji+(kbki)ki(1) \qquad 将其改写成矩阵形式,有: [ i b j b k b ] = [ i i j i k i ] [ i b ⋅ i i j b ⋅ i i k b ⋅ i i i b ⋅ j i j b ⋅ j i k b ⋅ j i i b ⋅ k i j b ⋅ k i k b ⋅ k i ] = [ i i j i k i ] P (2) \begin{bmatrix}i_b&j_b&k_b \end{bmatrix}=\begin{bmatrix} i_i&j_i&k_i\end{bmatrix}\begin{bmatrix} i_b\cdot i_i& j_b\cdot i_i& k_b\cdot i_i\\ i_b\cdot j_i& j_b\cdot j_i& k_b\cdot j_i \\ i_b\cdot k_i& j_b\cdot k_i& k_b\cdot k_i \end{bmatrix}=\begin{bmatrix}i_i&j_i&k_i\ \end{bmatrix}P \tag{2} [ibjbkb]=[iijiki]ibiiibjiibkijbiijbjijbkikbiikbjikbki=[iijiki ]P(2) \qquad 其中 P P P为从 i i i b b b系的过渡矩阵,有: P = [ i b ⋅ i i j b ⋅ i i k b ⋅ i i i b ⋅ j i j b ⋅ j i k b ⋅ j i i b ⋅ k i j b ⋅ k i k b ⋅ k i ] (3) P=\begin{bmatrix} i_b\cdot i_i& j_b\cdot i_i& k_b\cdot i_i\\ i_b\cdot j_i& j_b\cdot j_i& k_b\cdot j_i \\ i_b\cdot k_i& j_b\cdot k_i& k_b\cdot k_i \end{bmatrix} \tag{3} P=ibiiibjiibkijbiijbjijbkikbiikbjikbki(3) \qquad 设三维矢量 V V V i i i系和 b b b系下的投影分别为: V i = [ V x i V y i V z i ] V b = [ V x b V y b V z b ] (4) V^i=\begin{bmatrix} V_x^i\\V_y^i\\V_z^i \end{bmatrix} \qquad V^b=\begin{bmatrix} V_x^b\\V_y^b\\V_z^b \end{bmatrix} \tag{4} Vi=VxiVyiVziVb=VxbVybVzb(4) \qquad 向量 V V V的投影表示为: V = V x i i i + V y i j i + V z i k i = V x b i b + V y b j b + V z b k b (5) V=V_x^ii_i+V_y^ij_i+V_z^ik_i=V_x^bi_b+V_y^bj_b+V_z^bk_b \tag{5} V=Vxiii+Vyiji+Vziki=Vxbib+Vybjb+Vzbkb(5) \qquad 向量 V V V的坐标表示为: [ i i j i k i ] [ V x i V y i V z i ] = [ i b j b k b ] [ V x b V y b V z b ] (6) \begin{bmatrix}i_i&j_i&k_i\ \end{bmatrix}\begin{bmatrix} V_x^i\\V_y^i\\V_z^i \end{bmatrix}=\begin{bmatrix}i_b&j_b&k_b \end{bmatrix}\begin{bmatrix} V_x^b\\V_y^b\\V_z^b \end{bmatrix} \tag{6} [iijiki ]VxiVyiVzi=[ibjbkb]VxbVybVzb(6) \qquad 将式(2)带入式(6)得: [ i i j i k i ] [ V x i V y i V z i ] = [ i i j i k i ] P [ V x b V y b V z b ] (7) \begin{bmatrix}i_i&j_i&k_i\ \end{bmatrix}\begin{bmatrix} V_x^i\\V_y^i\\V_z^i \end{bmatrix}=\begin{bmatrix}i_i&j_i&k_i\ \end{bmatrix}P\begin{bmatrix} V_x^b\\V_y^b\\V_z^b \end{bmatrix} \tag{7} [iijiki ]VxiVyiVzi=[iijiki ]PVxbVybVzb(7) \qquad 则有: [ V x i V y i V z i ] = P [ V x b V y b V z b ] 即 V i = P V b = C b i V b (8) \begin{bmatrix} V_x^i\\V_y^i\\V_z^i \end{bmatrix}=P\begin{bmatrix} V_x^b\\V_y^b\\V_z^b \end{bmatrix}即\ V^i=PV^b=C_b^iV^b \tag{8} VxiVyiVzi=PVxbVybVzb Vi=PVb=CbiVb(8) \qquad C b i = P C_b^i=P Cbi=P b b b系到 i i i系的坐标变换矩阵,或从 i i i系到 b b b系的坐标系变换矩阵
\qquad 由矩阵 P P P的几何意义可知,矩阵 P P P的行向量分别表示 i i i系坐标轴向单位矢量 i i , j i , k i i_i,j_i,k_i ii,ji,ki b b b系下的投影,故其任意行向量之间两两之间相互正交,因此过渡矩阵 P P P是单位正交阵 ( P T P = I ) (P^TP=I) (PTP=I)。同时也可直接进行计算验证,如下:
P T P = [ i b ⋅ i i i b ⋅ j i i b ⋅ k i j b ⋅ i i j b ⋅ j i j b ⋅ k i k b ⋅ i i k b ⋅ j i k b ⋅ k i ] [ i b ⋅ i i j b ⋅ i i k b ⋅ i i i b ⋅ j i j b ⋅ j i k b ⋅ j i i b ⋅ k i j b ⋅ k i k b ⋅ k i ] = [ 1 0 0 0 1 0 0 0 1 ] (9) P^TP=\begin{bmatrix} i_b\cdot i_i& i_b\cdot j_i& i_b\cdot k_i\\ j_b\cdot i_i& j_b\cdot j_i& j_b\cdot k_i \\ k_b\cdot i_i& k_b\cdot j_i& k_b\cdot k_i \end{bmatrix}\begin{bmatrix} i_b\cdot i_i& j_b\cdot i_i& k_b\cdot i_i\\ i_b\cdot j_i& j_b\cdot j_i& k_b\cdot j_i \\ i_b\cdot k_i& j_b\cdot k_i& k_b\cdot k_i \end{bmatrix} =\begin{bmatrix} 1& 0& 0\\ 0& 1& 0 \\ 0& 0& 1 \end{bmatrix} \tag{9} PTP=ibiijbiikbiiibjijbjikbjiibkijbkikbkiibiiibjiibkijbiijbjijbkikbiikbjikbki=100010001(9) \qquad 由于 C b i = P C_b^i=P Cbi=P的各个元素均表示 b b b系与 i i i系相应坐标轴间的夹角余弦值,因此我们又把 C b i C_b^i Cbi称为方向余弦阵 ( d i r e c t i o n c o s i n e m a t r i x , D C M ) (direction\ cosine\ matrix,DCM) (direction cosine matrix,DCM)

参考文献
[1] 严恭敏, 翁浚. 捷联惯导算法与组合导航原理[M]. 西安:西北工业大学出版社, 2020.


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部