R 语言聚类关联规则

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

a <- c(10,9,8)
b<- c(4,3,2)
c<- c(8,9,10)
a
  1. 10
  2. 9
  3. 8
# 余角相似度
sum(a*b)/sqrt(sum(a^2)*sum(b^2))

0.984682118265774

sum(a*c)/sqrt(sum(a^2)*sum(c^2))

0.983673469387755

x<- rbind(a,b,c)
x
a109 8
b 43 2
c 89 10
# 欧式距离
dist(x)
          a         b
b 10.392305          
c  2.828427 10.770330

在这里插入图片描述

newiris <-  iris
newiris$Species <- NULL
head(newiris)
Sepal.LengthSepal.WidthPetal.LengthPetal.Width
5.13.51.40.2
4.93.01.40.2
4.73.21.30.2
4.63.11.50.2
5.03.61.40.2
5.43.91.70.4
kc <- kmeans(newiris,3)
kc
K-means clustering with 3 clusters of sizes 38, 62, 50Cluster means:Sepal.Length Sepal.Width Petal.Length Petal.Width
1     6.850000    3.073684     5.742105    2.071053
2     5.901613    2.748387     4.393548    1.433871
3     5.006000    3.428000     1.462000    0.246000Clustering vector:[1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3[38] 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2[75] 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 1 1 2 1 1 1 1
[112] 1 1 2 2 1 1 1 1 2 1 2 1 2 1 1 2 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 2 1
[149] 1 2Within cluster sum of squares by cluster:
[1] 23.87947 39.82097 15.15100(between_SS / total_SS =  88.4 %)Available components:[1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss"
[6] "betweenss"    "size"         "iter"         "ifault"      
table(kc$cluster,iris$Species)
    setosa versicolor virginica1      0          2        362      0         48        143     50          0         0

在这里插入图片描述

library(cluster)
med <- pam(iris[,-5],3)
med
Medoids:ID Sepal.Length Sepal.Width Petal.Length Petal.Width
[1,]   8          5.0         3.4          1.5         0.2
[2,]  79          6.0         2.9          4.5         1.5
[3,] 113          6.8         3.0          5.5         2.1
Clustering vector:[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1[38] 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2[75] 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 3 3 3 2 3 3 3 3
[112] 3 3 2 2 3 3 3 3 2 3 2 3 2 3 3 2 2 3 3 3 3 3 2 3 3 3 3 2 3 3 3 2 3 3 3 2 3
[149] 3 2
Objective function:build      swap 
0.6709391 0.6542077 Available components:[1] "medoids"    "id.med"     "clustering" "objective"  "isolation" [6] "clusinfo"   "silinfo"    "diss"       "call"       "data"      
table(med$cluster,iris$Species)
    setosa versicolor virginica1     50          0         02      0         48        143      0          2        36

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

library(arules)
Loading required package: MatrixAttaching package: 'arules'The following objects are masked from 'package:base':abbreviate, write
data(Groceries)
Groceries
transactions in sparse format with9835 transactions (rows) and169 items (columns)
summary(Groceries)
transactions as itemMatrix in sparse format with9835 rows (elements/itemsets/transactions) and169 columns (items) and a density of 0.02609146 most frequent items:whole milk other vegetables       rolls/buns             soda 2513             1903             1809             1715 yogurt          (Other) 1372            34055 element (itemset/transaction) length distribution:
sizes1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
2159 1643 1299 1005  855  645  545  438  350  246  182  117   78   77   55   46 17   18   19   20   21   22   23   24   26   27   28   29   32 29   14   14    9   11    4    6    1    1    1    1    3    1 Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 1.000   2.000   3.000   4.409   6.000  32.000 includes extended item information - examples:labels  level2           level1
1 frankfurter sausage meat and sausage
2     sausage sausage meat and sausage
3  liver loaf sausage meat and sausage
freq = eclat(Groceries,parameter = list(support=0.06,maxlen=10))
Eclatparameter specification:tidLists support minlen maxlen            target   extFALSE    0.06      1     10 frequent itemsets FALSEalgorithmic control:sparse sort verbose7   -2    TRUEAbsolute minimum support count: 590 create itemset ... 
set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
sorting and recoding items ... [20 item(s)] done [0.00s].
creating sparse bit matrix ... [20 row(s), 9835 column(s)] done [0.00s].
writing  ... [21 set(s)] done [0.00s].
Creating S4 object  ... done [0.00s].
inspect(freq)
     items                         support    count
[1]  {other vegetables,whole milk} 0.07483477  736 
[2]  {whole milk}                  0.25551601 2513 
[3]  {other vegetables}            0.19349263 1903 
[4]  {rolls/buns}                  0.18393493 1809 
[5]  {yogurt}                      0.13950178 1372 
[6]  {soda}                        0.17437722 1715 
[7]  {root vegetables}             0.10899847 1072 
[8]  {tropical fruit}              0.10493137 1032 
[9]  {bottled water}               0.11052364 1087 
[10] {sausage}                     0.09395018  924 
[11] {shopping bags}               0.09852567  969 
[12] {citrus fruit}                0.08276563  814 
[13] {pastry}                      0.08896797  875 
[14] {pip fruit}                   0.07564820  744 
[15] {whipped/sour cream}          0.07168277  705 
[16] {fruit/vegetable juice}       0.07229283  711 
[17] {domestic eggs}               0.06344687  624 
[18] {newspapers}                  0.07981698  785 
[19] {brown bread}                 0.06487036  638 
[20] {bottled beer}                0.08052872  792 
[21] {canned beer}                 0.07768175  764 
model <- apriori(Groceries,parameter = list(support=0.01,confidence=0.5))
AprioriParameter specification:confidence minval smax arem  aval originalSupport maxtime support minlen0.5    0.1    1 none FALSE            TRUE       5    0.01      1maxlen target   ext10  rules FALSEAlgorithmic control:filter tree heap memopt load sort verbose0.1 TRUE TRUE  FALSE TRUE    2    TRUEAbsolute minimum support count: 98 set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
sorting and recoding items ... [88 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 3 4 done [0.00s].
writing ... [15 rule(s)] done [0.00s].
creating S4 object  ... done [0.00s].
inspect(model)
     lhs                                      rhs                support   
[1]  {curd,yogurt}                         => {whole milk}       0.01006609
[2]  {other vegetables,butter}             => {whole milk}       0.01148958
[3]  {other vegetables,domestic eggs}      => {whole milk}       0.01230300
[4]  {yogurt,whipped/sour cream}           => {whole milk}       0.01087951
[5]  {other vegetables,whipped/sour cream} => {whole milk}       0.01464159
[6]  {pip fruit,other vegetables}          => {whole milk}       0.01352313
[7]  {citrus fruit,root vegetables}        => {other vegetables} 0.01037112
[8]  {tropical fruit,root vegetables}      => {other vegetables} 0.01230300
[9]  {tropical fruit,root vegetables}      => {whole milk}       0.01199797
[10] {tropical fruit,yogurt}               => {whole milk}       0.01514997
[11] {root vegetables,yogurt}              => {other vegetables} 0.01291307
[12] {root vegetables,yogurt}              => {whole milk}       0.01453991
[13] {root vegetables,rolls/buns}          => {other vegetables} 0.01220132
[14] {root vegetables,rolls/buns}          => {whole milk}       0.01270971
[15] {other vegetables,yogurt}             => {whole milk}       0.02226741confidence lift     count
[1]  0.5823529  2.279125  99  
[2]  0.5736041  2.244885 113  
[3]  0.5525114  2.162336 121  
[4]  0.5245098  2.052747 107  
[5]  0.5070423  1.984385 144  
[6]  0.5175097  2.025351 133  
[7]  0.5862069  3.029608 102  
[8]  0.5845411  3.020999 121  
[9]  0.5700483  2.230969 118  
[10] 0.5173611  2.024770 149  
[11] 0.5000000  2.584078 127  
[12] 0.5629921  2.203354 143  
[13] 0.5020921  2.594890 120  
[14] 0.5230126  2.046888 125  
[15] 0.5128806  2.007235 219  
inspect(subset(model,subset = rhs%in%"whole milk"&lift>2.2))
    lhs                                 rhs          support    confidence
[1] {curd,yogurt}                    => {whole milk} 0.01006609 0.5823529 
[2] {other vegetables,butter}        => {whole milk} 0.01148958 0.5736041 
[3] {tropical fruit,root vegetables} => {whole milk} 0.01199797 0.5700483 
[4] {root vegetables,yogurt}         => {whole milk} 0.01453991 0.5629921 lift     count
[1] 2.279125  99  
[2] 2.244885 113  
[3] 2.230969 118  
[4] 2.203354 143  


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部