机器学习之决策树(下)
在决策树中有一个很重要的概念就是深度
没错决策树很容易过拟合
从iris来看下所谓的过拟合
环境
- jupyter notebook
导入包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.datasets import load_iris
import pydotplus
mpl.rcParams['font.sans-serif'] = ['simHei']
mpl.rcParams['axes.unicode_minus'] = Falseiris_feature_E = 'sepal length', 'sepal width', 'petal length', 'petal width'
iris_feature = '花萼长度', '花萼宽度', '花瓣长度', '花瓣宽度'
iris_class = 'Iris-setosa', 'Iris-versicolor', 'Iris-virginica'
# 加载数据
x = pd.DataFrame(load_iris().data)
y = load_iris().target
图片是二维的,所以只能使用两个特征
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
