python cv2下载速度慢_python - Raspberry Pi上的OpenCV人脸检测速度很慢

我正在用OpenCV和Python编码测试Raspberry Pi。视频流效果很好(中等速度),但是当我在流上运行人脸检测时,CPU挂住了,刷新图像的速度很慢。

这就是我所拥有的。如何优化我的代码?#!/usr/bin/env python

import sys

import cv2.cv as cv

from optparse import OptionParser

min_size = (20, 20)

image_scale = 2

haar_scale = 1.2

min_neighbors = 2

haar_flags = 0

def detect_and_draw(img, cascade):

# allocate temporary images

gray = cv.CreateImage((img.width,img.height), 8, 1)

small_img = cv.CreateImage((cv.Round(img.width / image_scale),

cv.Round (img.height / image_scale)), 8, 1)

cv.Round (img.height / image_scale)), 8, 1)

# convert color input image to grayscale

cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

# scale input image for faster processing

cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)

cv.EqualizeHist(small_img, small_img)

if(cascade):

t = cv.GetTickCount()

faces = cv.HaarDetectObjects(small_img, cascade, cv.CreateMemStorage(0),

haar_scale, min_neighbors, haar_flags, min_size)

t = cv.GetTickCount() - t

print "detection time = %gms" % (t/(cv.GetTickFrequency()*1000.))

if faces:

for ((x, y, w, h), n) in faces:

# the input to cv.HaarDetectObjects was resized, so scale the

# bounding box of each face and convert it to two CvPoints

pt1 = (int(x * image_scale), int(y * image_scale))

# bounding box of each face and convert it to two CvPoints

pt1 = (int(x * image_scale), int(y * image_scale))

pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))

cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)

cv.ShowImage("result", img)

if __name__ == '__main__':

parser = OptionParser(usage = "usage: %prog [options] [camera_index]")

parser.add_option("-c", "--cascade", action="store", dest="cascade", type="str", help="Haar cascade file, default %default", default = "/usr/local/share/OpenCV/haarcascades")

(options, args) = parser.parse_args()

cascade = cv.Load(options.cascade)

capture = cv.CreateCameraCapture(0)

cv.NamedWindow("result", 1)

if capture:

frame_copy = None

while True:

frame = cv.QueryFrame(capture)

if not frame:

cv.WaitKey(0)

break

if not frame_copy:

frame_copy = cv.CreateImage((frame.width,frame.height),

cv.IPL_DEPTH_8U, frame.nChannels)

if frame.origin == cv.IPL_ORIGIN_TL:

cv.Copy(frame, frame_copy)

else:

cv.Copy(frame, frame_copy)

else:

cv.Flip(frame, frame_copy, 0)

detect_and_draw(frame_copy, cascade)

if cv.WaitKey(10) != -1:

break

else:

image = cv.LoadImage(input_name, 1)

detect_and_draw(image, cascade)

cv.WaitKey(0)

cv.DestroyWindow("result")

最佳答案

我可以建议您使用LBP级联而不是Haar。众所周知,它的检测速度非常快,最高可快6倍。

但是我不确定是否可以在旧版python界面中访问它。新包装器中的cv2.CascadeClassifier类可以检测LBP级联。


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部