ElasticSearch入门学习

ElasticSearch

分布式全文搜索引擎

6.X和7.X区别特别大

1、入门

大数据需要解决的两个问题:存储、计算

Google和Hadoop技术对比

GoogleHadoop
GFSHDFS
MapReduceMapReduce
BidTableHBase

回归主题

Lucene是一套信息检索工具包,是jar包

不包含搜索引擎系统!

包含以下功能:

  • 索引结构
  • 读写索引的工具
  • 排序
  • 搜索规则

Lucene和ES的关系

ES是基于Lucene的,在Lucene上做了一些封装和增强

1.1、ES概述

Elasticsearch 是一个分布式、高扩展、高实时的搜索与数据分析引擎。它能很方便的使大量数据具有搜索、分析和探索的能力。充分利用Elasticsearch的水平伸缩性,能使数据在生产环境变得更有价值。Elasticsearch 的实现原理主要分为以下几个步骤,首先用户将数据提交到Elasticsearch 数据库中,再通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据,当用户搜索数据时候,再根据权重将结果排名,打分,再将返回结果呈现给用户。

Elasticsearch是与名为Logstash的数据收集和日志解析引擎以及名为Kibana的分析和可视化平台一起开发的。这三个产品被设计成一个集成解决方案,称为“Elastic Stack”(以前称为“ELK stack”)。

Elasticsearch、Logstash、Kibana

1.2、ES和Solr对比及选型

功能:全文搜索、结构化搜索、分析

ES和Solr对比

  • 单纯对已有的数据,Solr的速度快
  • 简历索引时,Solr会产生I/O阻塞
  • 数据量增加,Solr效率变低
  • Solr使用Zookeeper进行分布式管理,ES自带分布式协调管理工具
  • Solr支持JSON、XML、CSV,ES只支持JSON
  • Solr比较成熟,ES相对开发维护着较少,更新快,学习使用成本高

1.3、ES安装和head插件安装

官网下载:https://www.elastic.co/start

目录结构

bin				# 启动文件
config			# 配置文件-log4j2.properties-jvm.options-elasticsearch.yml默认9200端口
jdk				# 环境
lib				# 相关jar包
logs			# 日志
modules			# 功能模块
plugins			# 插件

修改jvm.options文件的内存参数

-Xms256m
-Xmx256m

启动elasticsearch.bat文件,默认访问9200端口,通信端口9300

访问127.0.0.1:9200得到json字符串

{"name" : "DESKTOP-HQU412E","cluster_name" : "elasticsearch","cluster_uuid" : "ct067Y-dRqejNoOwIvqDog","version" : {"number" : "7.6.2","build_flavor" : "default","build_type" : "zip","build_hash" : "ef48eb35cf30adf4db14086e8aabd07ef6fb113f","build_date" : "2020-03-26T06:34:37.794943Z","build_snapshot" : false,"lucene_version" : "8.4.0","minimum_wire_compatibility_version" : "6.8.0","minimum_index_compatibility_version" : "6.0.0-beta1"},"tagline" : "You Know, for Search"
}
ES8.x

问题

  • 配置文件配置内存参数换地方了
    • 需要在jvm.options.d中新建一个xxx.options来配置内存参数
  • 需要使用https进行访问,且第一次启动时,自动生成elastic用户的密码
elastic-head插件

环境需求:需要npm、node.js和python2

初始化并启动elastic-head

cd elasticsearch-head-master
npm install
npm run start

启动后访问9100端口,要连接elasticsearch,必须解决跨域问题(跨端口、跨IP、跨网站)

配置跨域

配置elasticsearch.yml

http.cors.enabled: true
http.cors.allow-origin: "*"

重启elasticsearch.bat,9100上连接

在这里插入图片描述

将elastic-head当作可视化工具,不要用它来查询,后续使用Kibana来做

1.4、Kibana安装

了解ELK

Elasticsearch、Logstash、Kibana

收集清洗数据 => 分析 => 数据展示

一般提到ELK,就是日志分析架构技术栈总称

下载

官网下载压缩包后解压

注意:Elasticsearch和Kibana必须一致!

启动

点击bin\kibana.bat启动服务

默认端口5601

选择测试工具

使用Kibana测试工具

在这里插入图片描述

汉化Kibana

config\kibana.yml下配置国际化,然后重启服务器

#i18n.locale: "en"
i18n.locale: "zh-CN"

在这里插入图片描述

1.5、ES核心概念

Elasticsearch面向文档,关系型数据库和ES可以进行客观地对比

RDBElasticsearch
数据库(database)索引(indices)
表(tables)types
行(rows)documents
字段(columns)fields

Elasticsearch中一切都是JSON

索引 > 类型 > 文档

Elasticsearch集群分布

Elasticsearch-head中新建索引默认分片是5

分片即每个碎片分布在不同的集群中

在这里插入图片描述

倒排索引

Lucene底层采用的就是倒排索引,这种结构适用于快速的全文搜索

tremdoc_1doc_2
to×
forever
total21

例如博客文章

博客文章(原始数据)索引列表(倒排索引)
博客文章ID标签标签博客文章ID
1pythonpython1,2,3
2pythonlinux3,4
3linux,python
4linux

一个Elasticsearch索引是多个Lucene索引组成的

1.6、IK分词器

什么是IK分词器?

即把一段中文划分成一个个的关键字,IK分词器是一个插件

分词算法

IK提供了两个分词算法

  • ik_smart:最少切分
  • ik_max_word:最细粒度切分

GitHub下载地址:https://github.com/medcl/elasticsearch-analysis-ik

使用步骤

  • 什么版本的ES就下载什么版本的ik

  • 下载的压缩包有两种类型,一种未打包的源代码,一种打包好的

  • 以下情况为未打包的源代码

    • 下载后解压,并执行maven命令打包 mvn clean package
    • 打包好后进入目录target\releases下,解压里面的压缩包到ES的plugins文件夹下
  • 重启ES

在这里插入图片描述

可以使用命令行确认是否载入插件

E:\environment\ELK\elasticsearch-7.6.2\bin>elasticsearch-plugin list
future versions of Elasticsearch will require Java 11; your Java version from [E:\environment\java\JDK\jre] does not meet this requirement
ik

测试使用

在这里插入图片描述

配置自定义扩展字典

ik/config/目录下新建自己的字典文件

hu.dic

狂神说

IKAnalyzer.cfg.xml



<properties><comment>IK Analyzer 扩展配置comment><entry key="ext_dict">hu.dicentry><entry key="ext_stopwords">entry>
properties>

重启ES测试

1.7、Rest风格操作索引

关于索引的基础操作

使用Kibana创建索引

PUT /索引名/类型名/文档id
{请求体
}

例如

PUT /test1/type1/1
{"name": "hu","age": 18
}
1.7.1、创建索引

在这里插入图片描述

1.7.2、查看索引

在这里插入图片描述

数据类型

  • 字符串
    • text:可以被分词
    • keyword:不可分词
  • 数值
    • byte
    • short
    • integer
    • long
    • float
    • half float
    • scaled float
  • 日期
    • date
  • te布尔值
    • boolean
  • 二级制
    • binary

指定字段的类型

创建索引并设置规则

PUT /test2
{"mappings": {"properties": {"name": {"type": "text"},"age": {"type": "long"},"birthday":{"type": "date"}}}
}

执行

在这里插入图片描述

获得规则

GET test2

在这里插入图片描述

其他命令

GET _cat/health			# 获取ES健康状态
GET _cat/indices?v		# 查看索引信息
1.7.3、修改索引
# 以前的方法
PUT /test1/type1/1
{"name": "hu123","age": 18123
}# 现在的方法
POST /test1/type1/1/_update
{"doc": {"name": "hu123",}
}

修改索引后,版本version会增加,result变为update

1.7.4、删除索引
DELETE test2/_doc/1{"acknowledged" : true
}

注意

  • 若不写文档类型,则必须使用POST
  • restful风格不允许url为驼峰

1.8、回顾上节

添加数据

PUT /user_list/user/1
{"name": "hu","age": 18,"desc": "一顿操作猛如虎","tags": ["技术宅","暖"]
}
PUT /user_list/user/2
{"name": "张三","age": 23,"desc": "法外狂徒","tags": ["打人","狠"]
}
PUT /user_list/user/3
{"name": "李四","age": 19,"desc": "无","tags": ["唱","跳","rap"]
}

查询数据

GET user_list/user/3						# 简单查询
GET user_list/user/_search?q=name:hu		# 条件查询

修改数据

POST /user_list/user/3/_update
{"doc": {"name": "李四233",}
}

1.9、花式查询

文档复杂查询——构建查询方式

1、模糊查询文档匹配所有的数据

GET user_list/user/_search
{"query": {"match": {		# match匹配条件"name": "李"}}
}

在这里插入图片描述

注意:中文可以分词,模糊检索,拼音不会分词

hits:对应Java中的对象Hits
score:权重
source:数据

2、模糊查找documents的部分fields

GET user_list/user/_search
{"query": {"match": {"name": "李"}},"_source": ["name","desc"]
}

3、排序

"sort": [{"age": {"order": "desc"}}
]

4、分页

从第0条数据开始,一页显示2条数据

GET user_list/user/_search
{"query": {"match": {"name": "李"}},"_source": ["name","desc"],"sort": [{"age": {"order": "desc"}}],"from": 0,"size": 2
}

5、布尔查询

多条件精确查询

GET user_list/user/_search
{"query": {"bool": {"must": [{"match": {"name": "hu"}},{"match": {"age": "18"}}]}}
}
  • must:所有的条件都要符合
  • must_not:所有条件都不符合
  • should:或,满足一个即可

6、过滤器

GET user_list/user/_search
{"query": {"bool": {"must": [{"match": {"name": "hu"}}],"filter": {		# 过滤"range": {"age": {		# field"gte": 3,	# 大于等于"lte": 18	# 小于等于}}}}}
}

7、多条件匹配

模糊查询

满足其中一个条件即可被查询出

GET user_list/user/_search
{"query": {"match": {"tags": "唱 rap 跳"}}
}

精确查询

term使用倒排索引精确查询

关于分词

  • term直接精确查询
  • match会使用分词器解析
GET user_list/user/_search
{"query": {"bool": {"should": [{"term": {"age": {"value": "18"}}},{"term": {"age": {"value": "23"}}}]}}
}

8、高亮查询

GET user_list/user/_search
{"query": {"match": {"name": "李"}},"highlight": {"fields": {"name": {}}}
}

自动增加html标签高亮显示

在这里插入图片描述

自定义标签样式

GET user_list/user/_search
{"query": {"match": {"name": "李"}},"highlight": {"pre_tags": "

","post_tags": "

"
, "fields": {"name": {}}} }

在这里插入图片描述

2、进阶

2.1、SpringBoot集成ES

  1. 查看官方文档:https://www.elastic.co/guide/index.html
  2. 找到客户端Clients链接

在这里插入图片描述

  1. 推荐使用Java REST Client
  2. 选择高级客户端(新版本的全都只有高级客户端)

在这里插入图片描述

原生maven依赖

<dependency><groupId>org.elasticsearch.clientgroupId><artifactId>elasticsearch-rest-high-level-clientartifactId><version>7.6.2version>
dependency>

SpringBoot依赖

<dependency><groupId>org.springframework.bootgroupId><artifactId>spring-boot-starter-data-elasticsearchartifactId>
dependency>

初始化

在这里插入图片描述

RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(new HttpHost("localhost", 9200, "http"),new HttpHost("localhost", 9201, "http")));
client.close();

配置基本的项目

  1. 新建SpringBoot项目,并添加ES依赖

  2. 一定要保证SpringBoot下的依赖和ES版本一致,这边使用的是7.6.2

  3. 修改默认版本

    <properties><java.version>1.8java.version><elasticsearch.version>7.6.2elasticsearch.version>
    properties>
    
  4. 创建ES配置类,注入bean

    package com.kuangshen.elaticsearch.config;import org.apache.http.HttpHost;
    import org.elasticsearch.client.RestClient;
    import org.elasticsearch.client.RestHighLevelClient;
    import org.springframework.context.annotation.Bean;
    import org.springframework.context.annotation.Configuration;@Configuration
    public class ElasticSearchClientConfig {@Beanpublic RestHighLevelClient restHighLevelClient(){RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(new HttpHost("localhost", 9200, "http")));return client;}
    }
    

2.2、索引API操作

在这里插入图片描述

创建空索引

@Test
void createIndexTest() throws IOException {// 创建索引请求CreateIndexRequest request = new CreateIndexRequest("text_index");// 获得请求响应体CreateIndexResponse response = restHighLevelClient.indices().create(request, RequestOptions.DEFAULT);System.out.println(response);
}

判断索引是否存在

@Test
void existsIndexTest() throws IOException {GetIndexRequest request = new GetIndexRequest("text_index");boolean exists = restHighLevelClient.indices().exists(request, RequestOptions.DEFAULT);System.out.println(exists);
}

删除索引

@Test
void deleteIndexTest() throws IOException {DeleteIndexRequest request = new DeleteIndexRequest("text_index");AcknowledgedResponse response = restHighLevelClient.indices().delete(request, RequestOptions.DEFAULT);System.out.println(response.isAcknowledged());
}

2.3、文档API操作

创建实体类

package com.kuangshen.elaticsearch.dto;import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.springframework.stereotype.Component;@Data
@NoArgsConstructor
@AllArgsConstructor
@Component
public class User {private String name;private int age;
}

创建文档

@Test
void createDocumentTest() throws IOException {User user = new User("xiaoming", 3);// 请求索引IndexRequest request = new IndexRequest("text_index");// 文档idrequest.id("1");request.timeout(TimeValue.timeValueSeconds(1));// 文档内容request.source(JSON.toJSONString(user), XContentType.JSON);// 客户端发送请求IndexResponse indexResponse = restHighLevelClient.index(request, RequestOptions.DEFAULT);System.out.println(indexResponse.status());System.out.println(indexResponse.toString());
}

判断文档是否存在

@Test
void existsDocumentTest() throws IOException {GetRequest request = new GetRequest("text_index","1");// 不获取_source上下文,判断效率更高request.fetchSourceContext(new FetchSourceContext(false));// 设置字段request.storedFields("_none_");boolean exists = restHighLevelClient.exists(request, RequestOptions.DEFAULT);System.out.println(exists);
}

获取文档的信息

@Test
void getDocumentTest() throws IOException {GetRequest request = new GetRequest("text_index", "1");restHighLevelClient.exists(request, RequestOptions.DEFAULT);GetResponse response = restHighLevelClient.get(request, RequestOptions.DEFAULT);System.out.println(response.getSourceAsString());System.out.println(response);
}

结果

{"age":3,"name":"xiaoming"}
{"_index":"text_index","_type":"_doc","_id":"1","_version":1,"_seq_no":0,"_primary_term":1,"found":true,"_source":{"age":3,"name":"xiaoming"}}

修改文档信息

   @Testvoid updateDocumentTest() throws IOException{UpdateRequest request = new UpdateRequest("text_index", "1");request.timeout("1s");request.doc(JSON.toJSONString(new User("xiaohong",3)),XContentType.JSON);UpdateResponse response = restHighLevelClient.update(request, RequestOptions.DEFAULT);System.out.println(response.toString());
}

删除文档

@Test
void deleteDocumentTest() throws IOException {DeleteRequest request = new DeleteRequest("test_index", "1");request.timeout("1s");DeleteResponse response = restHighLevelClient.delete(request, RequestOptions.DEFAULT);System.out.println(response.status());
}

插入多条数据

@Test
void batchInsertDocumentTest() throws IOException {BulkRequest request = new BulkRequest();request.timeout(ElasticSearchConstants.TIME_OUT);ArrayList<User> userList = new ArrayList<>();userList.add(new User("小红", 3));userList.add(new User("小明", 35));userList.add(new User("小刚", 23));userList.add(new User("小芳", 18));userList.add(new User("小键", 50));userList.forEach((user) -> {request.add(new IndexRequest(ElasticSearchConstants.ES_INDEX).source(JSON.toJSONString(user), XContentType.JSON));});BulkResponse responses = restHighLevelClient.bulk(request, RequestOptions.DEFAULT);System.out.println(!responses.hasFailures() ? responses.toString() : null);
}

复杂查询

@Test
void searchDocumentTest() throws IOException {SearchRequest request = new SearchRequest(ElasticSearchConstants.ES_INDEX);SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();sourceBuilder.timeout(new TimeValue(1, TimeUnit.SECONDS));sourceBuilder.query(QueryBuilders.termQuery("name", "小红"));/*sourceBuilder.from();sourceBuilder.size();sourceBuilder.highlighter();*/request.source(sourceBuilder);SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT);JSON.toJSONString(response.getHits());System.out.println("===============循环遍历===============");for (SearchHit hit : response.getHits().getHits()) {System.out.println(hit.getSourceAsMap());}
}

3、实战

京东搜索

项目搭建

新建一个SpringBoot项目

导入依赖


<project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0modelVersion><parent><groupId>org.springframework.bootgroupId><artifactId>spring-boot-starter-parentartifactId><version>2.6.4version><relativePath/> parent><groupId>com.kuangshengroupId><artifactId>elasticsearchartifactId><version>0.0.1-SNAPSHOTversion><name>elasticsearchname><description>仿京东搜索description><properties><java.version>1.8java.version><elasticsearch.version>7.6.2elasticsearch.version>properties><dependencies><dependency><groupId>org.springframework.bootgroupId><artifactId>spring-boot-starter-data-elasticsearchartifactId>dependency><dependency><groupId>org.springframework.bootgroupId><artifactId>spring-boot-starter-thymeleafartifactId>dependency><dependency><groupId>org.springframework.bootgroupId><artifactId>spring-boot-starter-webartifactId>dependency><dependency><groupId>org.projectlombokgroupId><artifactId>lombokartifactId><optional>trueoptional>dependency><dependency><groupId>org.springframework.bootgroupId><artifactId>spring-boot-starter-testartifactId><scope>testscope>dependency><dependency><groupId>com.alibabagroupId><artifactId>fastjsonartifactId><version>1.2.62version>dependency>dependencies><build><plugins><plugin><groupId>org.springframework.bootgroupId><artifactId>spring-boot-maven-pluginartifactId><configuration><excludes><exclude><groupId>org.projectlombokgroupId><artifactId>lombokartifactId>exclude>excludes>configuration>plugin>plugins>build>project>

配置文件

server.port=9090
spring.thymeleaf.cache=false

测试项目启动

爬取数据

数据哪里来?

  • 数据库获取
  • 消息队列中获取
  • 爬虫

爬取数据:获取请求返回的页面信息,筛选出我们想要的数据

导入jsoup,可以解析网页,不能解析视频,tiki包可以

<dependency><groupId>org.jsoupgroupId><artifactId>jsoupartifactId><version>1.10.2version>
dependency>

创建工具类测试

public static void main(String[] args) throws IOException {String url = "https://search.jd.com/Search?keyword=java";// 返回js页面对象,可以调用js的所有方法Document document = Jsoup.parse(new URL(url), 30000);document.getElementById("J_goodsList").getElementsByTag("li").forEach((element) -> {// 关于图片多的网站,所有的图片都是延迟加载的String image = element.getElementsByTag("img").eq(0).attr("data-lazy-img");String price = element.getElementsByClass("p-price").eq(0).text();String title = element.getElementsByClass("p-name").eq(0).text();System.out.println(image + "\t" + price + "\t" + title);System.out.println("========================================");});
}

爬取成功,进行项目准备工作

配置类

package com.kuangshen.elasticsearch.config;import org.apache.http.HttpHost;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestHighLevelClient;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;@Configuration
public class ElasticSearchConfig {@Beanpublic RestHighLevelClient restHighLevelClient(){RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(new HttpHost("localhost", 9200, "http")));return client;}
}

创建实体类

package com.kuangshen.elasticsearch.dto;import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.springframework.stereotype.Component;@Data
@NoArgsConstructor
@AllArgsConstructor
@Component
public class Content {private String title;private String price;private String img;
}

创建工具类方法

package com.kuangshen.elasticsearch.utils;import com.kuangshen.elasticsearch.dto.Content;
import org.jsoup.Jsoup;
import org.jsoup.nodes.Document;
import org.springframework.stereotype.Component;import java.io.IOException;
import java.net.URL;
import java.util.ArrayList;
import java.util.List;@Component
public class HtmlParseUtil {public List<Content> parseJD(String keyword) throws IOException {String url = "https://search.jd.com/Search?keyword=" + keyword;Document document = Jsoup.parse(new URL(url), 30000);ArrayList<Content> goodList = new ArrayList<>();document.getElementById("J_goodsList").getElementsByTag("li").forEach((element) -> {// 关于图片多的网站,所有的图片都是延迟加载的String image = element.getElementsByTag("img").eq(0).attr("data-lazy-img");String price = element.getElementsByClass("p-price").eq(0).text();String title = element.getElementsByClass("p-name").eq(0).text();goodList.add(new Content(title,price,image));});return goodList;}
}

业务编写

Service层

package com.kuangshen.elasticsearch.service;import com.alibaba.fastjson.JSON;
import com.kuangshen.elasticsearch.dto.Content;
import com.kuangshen.elasticsearch.utils.HtmlParseUtil;
import org.elasticsearch.action.bulk.BulkRequest;
import org.elasticsearch.action.bulk.BulkResponse;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.common.unit.TimeValue;
import org.elasticsearch.common.xcontent.XContentType;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.concurrent.TimeUnit;@Service
public class ContentServiceImpl {@Autowiredprivate HtmlParseUtil htmlParseUtil;@Autowiredprivate RestHighLevelClient restHighLevelClient;public boolean parseContent(String keyword) throws IOException {List<Content> contents = htmlParseUtil.parsejd(keyword);BulkRequest request = new BulkRequest();request.timeout("2m");contents.forEach((content) -> {request.add(new IndexRequest("jd_good").source(JSON.toJSONString(content), XContentType.JSON));});BulkResponse response = restHighLevelClient.bulk(request, RequestOptions.DEFAULT);return !response.isFragment();}public List<Map<String, Object>> searchPage(String keyword, int page, int size) throws IOException {if (page < 1){page = 1;}SearchRequest request = new SearchRequest("jd_good");SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();sourceBuilder.timeout(new TimeValue(60, TimeUnit.SECONDS));sourceBuilder.query(QueryBuilders.termQuery("title",keyword));sourceBuilder.from(page);sourceBuilder.size(size);request.source(sourceBuilder);SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT);ArrayList<Map<String, Object>> list = new ArrayList<>();for (SearchHit hit : response.getHits().getHits()) {list.add(hit.getSourceAsMap());}return list;}
}

Controller层

package com.kuangshen.elasticsearch.controller;import com.kuangshen.elasticsearch.service.ContentServiceImpl;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RestController;import java.io.IOException;
import java.util.List;
import java.util.Map;@RestController
public class ContentController {@AutowiredContentServiceImpl contentService;@GetMapping("/parse/{keyword}")public boolean parse(@PathVariable String keyword) throws IOException {return contentService.parseContent(keyword);}@GetMapping("/search/{keyword}/{page}/{size}")public List<Map<String, Object>> searchPage(@PathVariable String keyword,@PathVariable int page,@PathVariable int size) throws IOException {return contentService.searchPage(keyword, page, size);}
}

前后端交互

本地下载vue.js和axios.js并导入项目

npm init
npm install vue
npm install axios

导入html文件、css、images等静态文件


<html lang="en" xmlns:th="http://www.thymeleaf.org"><head><meta charset="UTF-8"/><title>狂神说Java-ES仿京东实战title><link rel="stylesheet" th:href="@{/css/style.css}"/>
head><body class="pg">
<div class="page" id="app"><div id="mallPage" class=" mallist tmall- page-not-market "><div id="header" class=" header-list-app"><div class="headerLayout"><div class="headerCon "><h1 id="mallLogo"><img th:src="@{/images/jdlogo.png}" alt="">h1><div class="header-extra"><div id="mallSearch" class="mall-search"><form name="searchTop" class="mallSearch-form clearfix"><fieldset><legend>天猫搜索legend><div class="mallSearch-input clearfix"><div class="s-combobox" id="s-combobox-685"><div class="s-combobox-input-wrap"><input v-model="keyword" type="text"autocomplete="off" value="dd" id="mq"class="s-combobox-input"aria-haspopup="true">div>div><button type="submit" id="searchbtn"@click.prevent="search()">搜索button>div>fieldset>form><ul class="relKeyTop"><li><a>狂神说Javaa>li><li><a>狂神说前端a>li><li><a>狂神说Linuxa>li><li><a>狂神说大数据a>li><li><a>狂神聊理财a>li>ul>div>div>div>div>div><div id="content"><div class="main"><form class="navAttrsForm"><div class="attrs j_NavAttrs" style="display:block"><div class="brandAttr j_nav_brand"><div class="j_Brand attr"><div class="attrKey">品牌div><div class="attrValues"><ul class="av-collapse row-2"><li><a href="#"> 狂神说 a>li><li><a href="#"> Java a>li>ul>div>div>div>div>form><div class="filter clearfix"><a class="fSort fSort-cur">综合<i class="f-ico-arrow-d">i>a><a class="fSort">人气<i class="f-ico-arrow-d">i>a><a class="fSort">新品<i class="f-ico-arrow-d">i>a><a class="fSort">销量<i class="f-ico-arrow-d">i>a><a class="fSort">价格<i class="f-ico-triangle-mt">i><iclass="f-ico-triangle-mb">i>a>div><div class="view grid-nosku"><div class="product" v-for="result in results"><div class="product-iWrap"><div class="productImg-wrap"><a class="productImg"><img :src="result.img">a>div><p class="productPrice"><em>{{result.price}}em>p><p class="productTitle"><a v-html="result.title">a>{result.title}}-->p><div class="productShop"><span>店铺: 狂神说Java span>div><p class="productStatus"><span>月成交<em>999笔em>span><span>评价 <a>3a>span>p>div>div>div>div>div>div>
div><script th:src="@{/js/vue.js}">script>
<script th:src="@{/js/axios.js}">script>
<script>let vm = new Vue({el: '#app',data: {keyword: '',results: [],},methods: {search() {let keyword = this.keyword;axios.get('/parse/' + keyword);axios.get('search/highlight/' + keyword + '/1/10').then((re) => {this.results = re.data;// console.log(this.results)});}}})
script>body>
html>

关键字高亮

public List<Map<String, Object>> searchPageHighlight(String keyword, int page, int size) throws IOException {if (page < 1) {page = 1;}SearchRequest request = new SearchRequest("jd_good");SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();sourceBuilder.timeout(new TimeValue(60, TimeUnit.SECONDS));sourceBuilder.query(QueryBuilders.termQuery("title", keyword));sourceBuilder.from(page);sourceBuilder.size(size);// 高亮HighlightBuilder highlightBuilder = new HighlightBuilder();highlightBuilder.field("title");// highlightBuilder.requireFieldMatch(false);highlightBuilder.preTags("");highlightBuilder.postTags("");sourceBuilder.highlighter(highlightBuilder);request.source(sourceBuilder);SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT);ArrayList<Map<String, Object>> list = new ArrayList<>();for (SearchHit hit : response.getHits().getHits()) {// 解析高亮字段Map<String, HighlightField> highlightFields = hit.getHighlightFields();HighlightField title = highlightFields.get("title");Map<String, Object> map = hit.getSourceAsMap();if (title != null) {StringBuilder highlightTitle = new StringBuilder();for (Text fragment : title.getFragments()) {highlightTitle.append(fragment);}map.put("title", highlightTitle.toString());}list.add(map);}return list;
}
<a v-html="result.title">a>

总结

Elasticsearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java语言开发的,并作为Apache许可条款下的开放源码发布,是一种流行的企业级搜索引擎。

Elasticsearch只支持JSON格式,可以搭分布式集群,大数据下高性能,基于Lucene的倒排索引,查询效率很高

Service层优化

package com.kuangshen.elasticsearch.service;import com.alibaba.fastjson.JSON;
import com.kuangshen.elasticsearch.dto.Content;
import com.kuangshen.elasticsearch.utils.HtmlParseUtil;
import org.elasticsearch.action.bulk.BulkRequest;
import org.elasticsearch.action.bulk.BulkResponse;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.common.text.Text;
import org.elasticsearch.common.unit.TimeValue;
import org.elasticsearch.common.xcontent.XContentType;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import org.elasticsearch.search.fetch.subphase.highlight.HighlightBuilder;
import org.elasticsearch.search.fetch.subphase.highlight.HighlightField;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.concurrent.TimeUnit;@Service
public class ContentServiceImpl {@Autowiredprivate HtmlParseUtil htmlParseUtil;@Autowiredprivate RestHighLevelClient restHighLevelClient;public boolean parseContent(String keyword) throws IOException {List<Content> contents = htmlParseUtil.parsejd(keyword);BulkRequest request = new BulkRequest();request.timeout("2m");contents.forEach((content) -> {request.add(new IndexRequest("jd_good").source(JSON.toJSONString(content), XContentType.JSON));});BulkResponse response = restHighLevelClient.bulk(request, RequestOptions.DEFAULT);return !response.isFragment();}public List<Map<String, Object>> searchPage(String keyword, int page, int size) throws IOException {SearchRequest request = new SearchRequest("jd_good");SearchSourceBuilder sourceBuilder = searchRequest(keyword, page, size);request.source(sourceBuilder);SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT);ArrayList<Map<String, Object>> list = new ArrayList<>();for (SearchHit hit : response.getHits().getHits()) {list.add(hit.getSourceAsMap());}return list;}public List<Map<String, Object>> searchPageHighlight(String keyword, int page, int size) throws IOException {SearchRequest request = new SearchRequest("jd_good");// 高亮HighlightBuilder highlightBuilder = new HighlightBuilder();highlightBuilder.field("title");highlightBuilder.requireFieldMatch(false);highlightBuilder.preTags("");highlightBuilder.postTags("");SearchSourceBuilder sourceBuilder = searchRequest(keyword, page, size);sourceBuilder.highlighter(highlightBuilder);request.source(sourceBuilder);SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT);ArrayList<Map<String, Object>> list = new ArrayList<>();for (SearchHit hit : response.getHits().getHits()) {// 解析高亮字段Map<String, HighlightField> highlightFields = hit.getHighlightFields();HighlightField title = highlightFields.get("title");// 不高亮的结果Map<String, Object> map = hit.getSourceAsMap();if (title != null) {// 这边使用StringBuilder不会出现使用+=的字符串串联StringBuilder highlightTitle = new StringBuilder();for (Text fragment : title.getFragments()) {highlightTitle.append(fragment);}map.put("title", highlightTitle.toString());}list.add(map);}return list;}private SearchSourceBuilder searchRequest(String keyword, int page, int size){if (page < 1) {page = 1;}SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();// 超时时间sourceBuilder.timeout(new TimeValue(60, TimeUnit.SECONDS));// 精确查询sourceBuilder.query(QueryBuilders.termQuery("title", keyword));// 分页sourceBuilder.from(page);sourceBuilder.size(size);return sourceBuilder;}
}

本文是观看狂神说Java总结的,有兴趣的可以去B站看看他的视频,全部免费而且非常棒
B站链接:https://www.bilibili.com/video/BV17a4y1x7zq?p=20&spm_id_from=pageDriver


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部