教你使用TensorFlow2对阿拉伯语手写字符数据集进行识别
@Author:Runsen
在本教程中,我们将使用 TensorFlow (Keras API) 实现一个用于多分类任务的深度学习模型,该任务需要对阿拉伯语手写字符数据集进行识别。
数据集下载地址:https://www.kaggle.com/mloey1/ahcd1
数据集介绍
该数据集由 60 名参与者书写的16,800 个字符组成,年龄范围在 19 至 40 岁之间,90% 的参与者是右手。
每个参与者在两种形式上写下每个字符(从“alef”到“yeh”)十次,如图 7(a)和 7(b)所示。表格以 300 dpi 的分辨率扫描。使用 Matlab 2016a 自动分割每个块以确定每个块的坐标。该数据库分为两组:训练集(每类 13,440 个字符到 480 个图像)和测试集(每类 3,360 个字符到 120 个图像)。数据标签为1到28个类别。
在这里,所有数据集都是CSV文件,表示图像像素值及其相应标签,并没有提供对应的图片数据。

导入模块
import numpy as np
import pandas as pd
#允许对dataframe使用display()
from IPython.display import display
# 导入读取和处理图像所需的库
import csv
from PIL import Image
from
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
