画loss曲线并平滑

画loss曲线并平滑!

    • 插入链![平滑前](https://img-blog.csdnimg.cn/b0dffc55d24840518ccd20dfcc40c032.png#pic_center)

import matplotlib.pyplot as plt
from matplotlib.pyplot import MultipleLocator
import json
import numpy as np
data_path_1 = ""
data_path_2 = ""
def read_json(data_path, stage, key_1, key_2):i = 0iter, loss = [], []with open(data_path, 'r') as f:content = f.readlines()for line in content:if json.loads(line)["mode"] == stage:i=i+1iter.append(i)loss.append(json.loads(line)[key_2])return iter, loss
iter_1, loss_seg_1 = read_json(data_path_1, "train", "iter", "loss")
np.savetxt('test1.csv', loss_seg_1, delimiter=',')last1 = loss_seg_1[0]
loss1=loss_seg_1
weight=0.9
for i in range(len(loss_seg_1)):smoothed_val1 = last1 * weight + (1 - weight) * loss_seg_1[i]loss1[i]=smoothed_val1last1= smoothed_val1iter_2, loss_seg_2 = read_json(data_path_2, "train", "iter", "loss")
np.savetxt('test2.csv', loss_seg_2, delimiter=',')last2 = loss_seg_2[0]
loss2=loss_seg_2
weight=0.9
for j in range(len(loss_seg_2)):smoothed_val2 = last2 * weight + (1 - weight) * loss_seg_2[j]loss2[j]=smoothed_val2last2 = smoothed_val2#设置横纵坐标的名称以及对应字体格式
font = {'family' : 'Times New Roman',
'weight' : 'normal',
'size' : 10,
}
index = 0
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
plt.xlim(0, 1000)
ax.set_xlabel('iteration', font)
ax.set_ylabel('loss %', font)
ax.set_title('Seg Loss',size=10)
ax.plot(iter_1[index:], loss1[index:], label = "model_1")
ax.plot(iter_2[index:], loss2[index:], label = "model_2")
#ax.scatter(iter_1[index:], loss_seg_1[index:], marker='.', color='black', s=8)
#ax.scatter(iter_2[index:], loss_seg_2[index:], marker='.', color='red', s=8)
plt.legend(loc='upper right')
plt.show()

平滑后

插入链平滑前


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部