【小白学习PyTorch教程】十五、BERT:通过PyTorch来创建一个文本分类的Bert模型
@Author:Runsen
2018 年,谷歌发表了一篇题为《Pre-training of deep bidirectional Transformers for Language Understanding》的论文。
在本文中,介绍了一种称为BERT(带转换器Transformers的双向编码Encoder 器表示)的语言模型,该模型在问答、自然语言推理、分类和通用语言理解评估或 (GLUE)等任务中取得了最先进的性能.
BERT全称为Bidirectional Encoder Representation from Transformers[1],是一种用于语言表征的预训练模型。
它基于谷歌2017年发布的Transformer架构,通常的Transformer使用一组编码器和解码器网络,而BERT只需要一个额外的输出层,对预训练进行fine-tune,就可以满足各种任务,根本没有必要针对特定任务对模型进行修改。
BERT将多个Transformer编码器堆叠在一起。Transformer基于著名的多头注意力(Multi-head Attention)模块,该模块在视觉和语言任务方面都取得了巨大成功。
在本文中,我们将使用 PyTorch来创建一个文本分类的Bert模型。
笔者介今天绍一个python库 — simpletransformers,可以很好的解决高级预训练语言模型使用困难的问题。
simpletransformers使得高级预训练模型(BERT、RoBERTa、XLNet、XLM、DistilBERT、ALBERT、CamemBERT、XLM-RoBERTa、FlauBERT)的训练、评估和预测变得简单,每条只需3行即可初始化模型。
数据集来源:https://www
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
