一阶微分形式不变性习题

一阶微分形式不变性

例1

y = e arctan ⁡ 2 x y=e^{\arctan \sqrt2 x} y=earctan2 x,求 d y dy dy.

解: d y = e arctan ⁡ 2 x ⋅ 1 1 + 2 x 2 ⋅ 2 d x = 2 e arctan ⁡ 2 x 1 + 2 x 2 d x dy=e^{\arctan \sqrt2 x}\cdot \dfrac{1}{1+2x^2}\cdot \sqrt2dx=\dfrac{\sqrt2 e^{\arctan \sqrt2 x}}{1+2x^2}dx dy=earctan2 x1+2x212 dx=1+2x22 earctan2 xdx


例2

f ( x ) = x ln ⁡ x f(x)=x\ln x f(x)=xlnx,求 d f ( 2 x ) df(2x) df(2x).

解: d f ( 2 x ) = f ′ ( 2 x ) ⋅ 2 d x = ( ln ⁡ 2 x + 1 ) ⋅ 2 d x = ( 2 ln ⁡ 2 x + 2 ) d x df(2x)=f'(2x)\cdot 2dx=(\ln 2x+1)\cdot 2dx=(2\ln 2x+2)dx df(2x)=f(2x)2dx=(ln2x+1)2dx=(2ln2x+2)dx


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部