视觉智能:从攻坚到闭环 - 颜水成 - 阅读摘要

视觉智能:从攻坚到闭环 - 颜水成 - 阅读摘要

原文阅读于雷锋网

把安全的概念从网络空间拓展到了物理空间,在关注网络空间问题的同时,通过 AI 能力,把安全的能力从网络空间拓展到物理空间。

和视觉、语言不一样,安全问题的数据标注需要顶级专家,人的作用是至关重要的,安全大脑是一个人机协同的系统。用户的反馈也可以进一步增强安全大脑的能力:用户用得越多,安全大脑也就变得越智能。

第一个是运动引擎,能让智能硬件在地面上进行智能运动;
第二个是交互引擎。
第三个是视觉引擎。
第四个是决策引擎。决策引擎主要根据用户的历史行为,来建立相关的决策模型,去预测将来用户可能会对什么东西感兴趣以及会有一些怎样的行为。

在学术界和工业界进行视觉智能研究,差别是非常大的。在学术界研究视觉智能,更像是一个个人攻坚的擂台赛,大家可能是针对某个具体问题、具体数据,去不停地设计新的算法,从而提升其性能。但是在工业界,则更像是一个综合的闭环的大战略,研究已不仅仅是某个小团队的事情,类似一个大战役,你可能需要后勤、医院,需要海、陆、空军进行协同作战,才能保证这场战争的胜利。所以我觉得在工业界做视觉智能研发很重要的一点,就是要回归商业的本质,要把视觉智能研究放在价值闭环和数据闭环上进行思考和推进。

当我们用深度学习做推理的时候,都是在用卷积神经网络进行推理,然而卷积神经网络在浅层网络无法感知远处的目标。

由于我的团队是 1×1 卷积的推动者,因而在想尽量用 1×1 的卷积方法来实现这件事情。Global Reasoning Unit,将 5 个 1×1 的卷积以模块的形式插入任意网络做学习,在浅层网络就能对远处的目标进行感知,使跨区域进行信息交换成为可能。无论是在分类任务,还是在其他的检测、分割任务中,这种方法都能有效提升现有网络的性能。

在工业界做研发一定要回归商业本质,必须将我们的研发放在价值闭环和数据闭环里面,去不断地思考和推进研发进度。

《创新者的窘境》 里面思考的问题是:为什么一些好的技术在大公司里面并不能被很好地利用起来?其中分析到的一个主要原因是,这些技术对于技术创新者来说,可能是一件非常高兴的事情,但是对于产品方、最终的用户以及生态中完成销售环节的公司来说,可能并没有带来价值的提升。当技术没有给所在闭环中的其他维度带来真正的价值,它的落地会非常困难。因此,在工业界做研发,我们的核心任务已不仅是炫技,还需要对所在闭环中的所有维度带来正向价值,从而保证技术的落地和最终应用。

在工业界做视觉智能研究,尤其是做视觉智能相关产品的时候,数据闭环也非常关键。研究者可能更多地关注算法模型,不过算法模型和具体产品的后台与用户的交互就形成了一个数据闭环,它是一个发现问题和迭代产品的过程。

永远没有完美的算法,在这种情况下,数据就变得非常关键。为什么中国会出现这么多做人脸识别的公司,并且这些公司都还生存得非常不错?其中的一个核心原因是每家公司都具有特定场景下 (银行、交通监控、公共监控等) 的数据优势,而正是这些数据能够让它们去不断优化模型,实现特定场景下更佳的表现。用户的反馈才能让我们在研究中真正发掘他们真正的痛点和需求,因此数据闭环对于工业界的视觉智能研究至关重要。

学术界和工业界做视觉智能研发的不同的特点:
在学术界做视觉智能研究就像恋爱中的男女,而在工业界做研发则更像结婚后的男女。

在学术界做视觉智能研究更像恋爱中的男女,每一点进步都让你们激动无比,同时还希望不断地有新的进步,达到新的高度。看到的全是对方的优点,你们总是不停地憧憬,因为暂时没人催你生孩子 (产品)。你们也会憧憬生一个小孩 (产品) 会有多么美好,认为这个孩子一定会是世界上最聪明、最乖巧的,因为反正不用真的把孩子生出来。

而在工业界做研发更像结婚后的男女,发现生娃 (产品) 成了你们最首要的任务。父母 (公司老板) 天天催着你生娃(产品),你们以为孩子生出来以后会很乖巧,结果生出来以后才发现一堆的问题、一堆的毛病,社会 (用户) 也不喜欢他/她,于是你不停地根据经验和用户反馈进行调教。最后孩子强大了,你头发白了,脊椎也坏了,但看着孩子 (产品) 还是一脸的满足幸福。

学术界的研究和业界的研究有很大的区别,业界的研发必须回归商业本质,尤其要放在价值闭环与数据闭环的维度上进行思考。价值闭环方面,技术需要对闭环中的产品、客户 、企业和社会产生正向推动,不然就有失败的可能。数据闭环方面,由于不存在完美的算法,因此我们只能依赖特定场景的数据来不断优化算法,进而优化产品模型。

Global Reasoning Unit,这个模块可插入任意网络,在浅层网络就能使跨区域进行信息交换成为可能。


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部