c语言灰度图像处理程序,灰度图像的阈值——C语言实现

阈值获取总结

图像处理中,常去除图像中不理想的部分,而保留对象部分。所以,我们可以通过阈值进行提取,例如,通过阈值法提取出文字部分。

但是,随着环境的变化,所给的阈值的不同,对于所提取的对象就有很大的差别。所以,需要一种实时确定阈值的方法使得背景和物体可以准确地分类。在此推荐的方法——

最大类间方差法(Otsu、大津法)。 通过对比和仔细的推算,此种方法比较容易实现,而且效果比较好。

下面简述并且摘录一下文献中关于“最大类间方差法”的说明:最大类间方差法(Otsu)是由Otsu于1979年提出的,是基于整幅图像的统计特性实现阈值的自动选取的,是全局二值化最杰出的代表。Otsu算法的基本思想是用某一假定的灰度值t将图像的灰度分成两组,当两组的类间方差最大时,此灰度值t就是图像二值化的最佳阈值。设图像有L个灰度值,取值范围在

0~L-1,在此范围内选取灰度值 T,将图像分成两组G0和G1,G0包含的像素的灰度值在 0~T,G1的灰度值在 T+1~L-1,用

N 表示图像像素总数。

算法可这样理解:阈值T将整幅图像分成前景和背景两部分,当两类的类间方差最大时,此时前景和背景的差别最大,二值化效果最好。因为方差是灰度分布均匀性的一种度量,方差值越大,说明构成图像的两部分差别越大,当部分目标错分为背景或部分背景错分为目标

都会导致两部分差别变小,因此使类间方差最大的分割阈值意味着错分概率最小。

大律法得到了广泛的应用,但是当物体目标与背景灰度差不明显时,会出现


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部