person reid评价指标——CMC原理及代码解析,mAP

CMC

CMC全程是Cumulative Matching Characteristics, 是行人重识别问题中的经典评价指标。该曲线的横坐标为rank,纵坐标为识别率百分比。rank n表示识别结果相似性降序排列中前n个结果包含目标。识别率是rank n 的数目#(rank n)占总的query样本数的比例。如下图

CMC曲线图来源 https://blog.csdn.net/m0_37240250/article/details/79942939 

 

代码解释

先贴代码

代码来源 [港中文Xiaogang Wang教授 主页]

下载链接

function C = cmc(D, varargin)
% CMC computes the Cumulative Match Characteristic.
%   C = CMC(D) computes the CMC of given distance matrix D between each pair
%   of gallery and probe person. Both gallery and probe persons are
%   assumed to be unique, i.e., the i-th gallery person matches only to
%   the i-th probe person. D(i, j) should be the distance between
%   gallery instance i and probe instance j.
%   单个参数C = CMC(D)时表示gallery和probe中的identity都是独一无二的,
%   即gallery中第i个person只匹配probe set第i个person
%
%   C = CMC(D, G, P) computes the CMC with G and P are id labels of each
%   person in gallery and probe sets. D is M*N where M and N are the lengths of
%   vector G and P, respectively. This function will first ran


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部