NLP word2vec paper
论文1
[word2vec]Efficient Estimation of Word Representation in Vector Space
part1 Introduction
part2 Model Architectures
part3 New Log-linear Models
part4 Results
part5 Examples of the Learned Relationships
part6 Conclusion
part7 Follow-Up work
论文2
[word2vec]Distributed Representations of Words and Phrase and their Compositionality
part1 Introduction
part2 The Skip-gram Model
- Hierarchical Softmax
- Negative Sampling
- Subsampling of Frequent Words
part3 Empirical Results
part4 Learning Phrases
- Phrase Skip-Gram Results
part5 Additive Compositionality
part6 Comparison to Published Word Representations
part7 Conclusion
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
