NLP word2vec paper

论文1

[word2vec]Efficient Estimation of Word Representation in Vector Space

part1 Introduction
part2 Model Architectures
part3 New Log-linear Models
part4 Results
part5 Examples of the Learned Relationships
part6 Conclusion
part7 Follow-Up work

论文2

[word2vec]Distributed Representations of Words and Phrase and their Compositionality

part1 Introduction
part2 The Skip-gram Model
  1. Hierarchical Softmax
  2. Negative Sampling
  3. Subsampling of Frequent Words
part3 Empirical Results
part4 Learning Phrases
  1. Phrase Skip-Gram Results
part5 Additive Compositionality
part6 Comparison to Published Word Representations
part7 Conclusion


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部