tensorflow 数据格式

tf 支持数据格式

"""x: Input data. It could be:- A Numpy array (or array-like), or a list of arrays(in case the model has multiple inputs).- A TensorFlow tensor, or a list of tensors(in case the model has multiple inputs).- A dict mapping input names to the corresponding array/tensors,if the model has named inputs.- A `tf.data` dataset. Should return a tupleof either `(inputs, targets)` or`(inputs, targets, sample_weights)`.- A generator or `keras.utils.Sequence` returning `(inputs, targets)`or `(inputs, targets, sample weights)`.A more detailed description of unpacking behavior for iterator types(Dataset, generator, Sequence) is given below.y: Target data. Like the input data `x`,it could be either Numpy array(s) or TensorFlow tensor(s).It should be consistent with `x` (you cannot have Numpy inputs andtensor targets, or inversely). If `x` is a dataset, generator,or `keras.utils.Sequence` instance, `y` shouldnot be specified (since targets will be obtained from `x`).
"""
  1. numpy array
  2. tf.Tensor
  3. dict
  4. tf.data.dataSet
  5. generator keras.utils.Sequence


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部