tf 从RNN到BERT

数据初始化
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import *((x_train, y_train), (x_test, y_test)) = keras.datasets.mnist.load_data()x_train = x_train.reshape(60000, -1)
y_train = keras.utils.np_utils.to_categorical(y_train)
SimpleRNN
model1 = keras.Sequential()
model1.add(Embedding(input_dim=256, output_dim=5))
model1.add(SimpleRNN(units=2))
model1.add(Dense(10))model1.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
model1.fit(x_train, y_train, batch_size=10)
GRU
model2 = keras.Sequential()
model2.add(Embedding(input_dim=256, output_dim=5))
model2.add(GRU(units=2))
model2.add(Dense(10))model2.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
model2.fit(x_train, y_train, batch_size=10)
LSTM
model3 = keras.Sequential()
model3.add(Embedding(input_dim=256, output_dim=5))
model3.add(LSTM(units=2))
model3.add(Dense(10))model3.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
model3.fit(x_train, y_train, batch_size=10)
encoder-decoder
model3 = keras.Sequential()
model3.add(Embedding(input_dim=256, output_dim=5))
model3.add(LSTM(units=2))
model3.add(Dense(10))model3.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
model3.fit(x_train, y_train, batch_size=10)


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部