tf.summary、tfrecord

tf.summary



通常情况下,我们在训练网络时添加summary都是通过如下方式:

tf.scalar_summary(tags, values)
# ...
summary_op = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter(logdir, graph=sess.graph)
summary_str = sess.run(summary_op)
summary_writer.add_summary(summary_str, global_step)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

当我们自己想添加其他数据到TensorBoard的时候(例如验证时的loss等),这种方式显得太过繁琐,其实我们可以通过如下方式添加自定义数据到TensorBoard内显示。

summary_writer = tf.summary.FileWriter(logdir)
summary = tf.Summary(value=[tf.Summary.Value(tag="summary_tag", simple_value=0), tf.Summary.Value(tag="summary_tag2", simple_value=1),
])
# x代表横轴坐标
summary_writer.add_summary(summary, x)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

或者:

summary_writer = tf.summary.FileWriter(logdir)
summary = tf.Summary()
summary.value.add(tag="summary_tag", simple_value=0)
summary.value.add(tag="summary_tag2", simple_value=1)
# x代表横轴坐标
summary_writer.add_summary(summary, x)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

注意,这里的x只能是整数,如果是小数的话会自动转为整数类型。

下面给出一段完整的示例代码

import tensorflow as tf
summary_writer = tf.summary.FileWriter('/tmp/test')
summary = tf.Summary(value=[tf.Summary.Value(tag="summary_tag", simple_value=0), tf.Summary.Value(tag="summary_tag2", simple_value=1),
])
summary_writer.add_summary(summary, 1)summary = tf.Summary(value=[tf.Summary.Value(tag="summary_tag", simple_value=1), tf.Summary.Value(tag="summary_tag2", simple_value=3),
])
summary_writer.add_summary(summary, 2)summary_writer.close()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

显示效果如下所示:
TensorBoard显示示例

参考资料:

How to manually create a tf.Summary

修改历史:
2017-2-19 适应1.0api



tensorboard 显示时样例:tensorboard - -logdir E:/programData#不加引号

tfrecord
写:
with tf.python_io.TFRecordWriter(tf_filename) as tfrecord_writer:
for i, image_example in enumerate(dataset):
sys.stdout.write(‘\r>> Converting image %d/%d’ % (i + 1, len(dataset)))
sys.stdout.flush()
example = tf.train.Example(features=tf.train.Features(feature={
‘image/encoded’: _bytes_feature(image_buffer),
‘image/label’: _int64_feature(class_label),
‘image/roi’: _float_feature(roi),
‘image/landmark’: _float_feature(landmark)#注意是冒号
}))
(注:def _bytes_feature(value):
if not isinstance(value, list):
value = [value]
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))图像一般tostring()转字符串)
tfrecord_writer.write(example.SerializeToString())
读:
filename_queue = tf.train.string_input_producer([tfrecord_file],shuffle=True)
# read tfrecord
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
image_features = tf.parse_single_example(
serialized_example,
features={
‘image/encoded’: tf.FixedLenFeature([], tf.string),#one image one record
‘image/label’: tf.FixedLenFeature([], tf.int64),
‘image/roi’: tf.FixedLenFeature([4], tf.float32),
‘image/landmark’: tf.FixedLenFeature([10],tf.float32)
}
)
image_features就是解析出来的字典。


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部