伽玛函数1/2值计算

\Gamma(x)=\int_{0}^{\infty}t^{x-1}e^{-t}dt

\Gamma(\frac{1}{2})=\int_{0}^{\infty}t^{-\frac{1}{2}}e^{-t}dt

解法一:

由余元公式:

\Gamma(1-x)\Gamma(x)=\frac{\pi}{sin\pi x}

可得

\Gamma(\frac{1}{2})=\sqrt{\pi}

解法二:

\Gamma(\frac{1}{2})=\int_{0}^{\infty}t^{-\frac{1}{2}}e^{-t}dt

t=\frac{x^{2}}{2}

\begin{aligned} \Gamma(\frac{1}{2})&=\int_{0}^{\infty}\sqrt{2}x^{-1}e^{-\frac{x^{2}}{2}}d\frac{x^{2}}{2}\\ &=\int_{0}^{\infty}\sqrt{2}e^{-\frac{x^{2}}{2}}dx \end{aligned}

由标准正态分布密度函数:

f(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}},-\infty< x<\infty

\begin{aligned} \Gamma(\frac{1}{2})=&\int_{0}^{\infty}2\sqrt{\pi}f(x)dx\\ =&2\sqrt{\pi}(1-F(0))\\ =&2\sqrt{\pi}\frac{1}{2}\\ =&\sqrt{\pi} \end{aligned}

解法三:

\Gamma(\frac{1}{2})=\int_{0}^{\infty}t^{-\frac{1}{2}}e^{-t}dt

t=x^{2}

\begin{aligned} \Gamma(\frac{1}{2})=&\int_{0}^{\infty}x^{-1}e^{-x^{2}}dx^{2}\\ =&\int_{0}^{\infty}2e^{-x^{2}}dx \end{aligned}

I=\int_{0}^{\infty}e^{-x^{2}}dx

I^{2}=\int_{0}^{\infty}\int_{0}^{\infty}e^{-x^{2}-y^{2}}dxdy

转化为极坐标:

\begin{aligned} I^{2}=&\int_{0}^{\frac{\pi}{2}}\int_{0}^{\infty}e^{-\rho^{2}}\rho d\rho d\theta\\ =&\int_{0}^{\frac{\pi}{2}}[-\frac{1}{2}e^{-\rho^{2}}]_{0}^{\infty}d\theta\\ =&\int_{0}^{\frac{\pi}{2}}\frac{1}{2}d\theta\\ =&\frac{\pi}{4} \end{aligned}

I=\frac{\sqrt{\pi}}{2}

\Gamma(\frac{1}{2})=2I=\sqrt{\pi}


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部