(四)误差分析
本文主要内容如下:
- 1. 矩阵的条件数
- 2. 条件数的性质
- 3. 误差与残差
1. 矩阵的条件数
线性方程组
A x ⃗ = b ⃗ \bold A\vec{x}=\vec{b} Ax=b
其中, A \bold A A 为可逆矩阵, x ⃗ \vec{x} x 为该线性方程的精确解。
定义 若系数矩阵 A \bold A A 与常数项 b ⃗ \vec{b} b 的微小变化就引起线性方程组的解发生相对较大的改变,则称该线性方程组为病态方程组,相应的系数矩阵称作病态矩阵,否则称作良态方程组、良态矩阵。
(1) 设常数项有微小改变 δ b ⃗ \delta\vec{b} δb,使得方程组的解发生改变 δ x ⃗ \delta\vec{x} δx ,即:
A ( x ⃗ + δ x ⃗ ) = b ⃗ + δ b ⃗ ⟹ δ x ⃗ = A − 1 ( δ b ⃗ ) ⟹ ∣ ∣ δ x ⃗ ∣ ∣ ≤ ∣ ∣ A − 1 ∣ ∣ ⋅ ∣ ∣ δ b ⃗ ∣ ∣ \bold A(\vec{x}+\delta\vec{x})=\vec{b}+\delta\vec{b}\Longrightarrow\delta\vec{x}=\bold A^{-1}(\delta\vec{b})\Longrightarrow||\delta\vec{x}||\le||\bold A^{-1}||\cdot||\delta\vec{b}|| A(x+δx)=b+δb⟹δx=A−1(δb)⟹∣∣δx∣∣≤∣∣A−1∣∣⋅∣∣δb∣∣
又由于
∣ ∣ b ⃗ ∣ ∣ = ∣ ∣ A x ⃗ ∣ ∣ ≤ ∣ ∣ A ∣ ∣ ⋅ ∣ ∣ x ∣ ∣ ⃗ ⟹ 1 ∣ ∣ x ⃗ ∣ ∣ ≤ ∣ ∣ A ∣ ∣ ∣ ∣ b ⃗ ∣ ∣ ||\vec{b}||=||\bold A\vec{x}||\le||\bold A||\cdot||\vec{x||}\Longrightarrow\frac{1}{||\vec{x}||}\le\frac{||\bold A||}{||\vec{b}||} ∣∣b∣∣=∣∣Ax∣∣≤∣∣A∣∣⋅∣∣x∣∣⟹∣∣x∣∣1≤∣∣b∣∣∣∣A∣∣
故
∣ ∣ δ x ⃗ ∣ ∣ ∣ ∣ x ⃗ ∣ ∣ ≤ ∣ ∣ A − 1 ∣ ∣ ⋅ ∣ ∣ A ∣ ∣ ∣ ∣ δ b ⃗ ∣ ∣ ∣ ∣ b ⃗ ∣ ∣ ( a − 1 ) \frac{||\delta\vec{x}||}{||\vec{x}||}\le||\bold A^{-1}||\cdot||\bold A||\frac{||\delta\vec{b}||}{||\vec{b}||}\quad(a-1) ∣∣x∣∣∣∣δx∣∣≤∣∣A−1∣∣⋅∣∣A∣∣∣∣b∣∣∣∣δb∣∣(a−1)
另外
∣ ∣ δ b ⃗ ∣ ∣ = ∣ ∣ A ( δ x ⃗ ) ∣ ∣ ≤ ∣ ∣ A ∣ ∣ ⋅ ∣ ∣ δ x ⃗ ∣ ∣ ∣ ∣ x ⃗ ∣ ∣ = ∣ ∣ A − 1 b ⃗ ∣ ∣ ≤ ∣ ∣ A − 1 ∣ ∣ ⋅ ∣ ∣ b ⃗ ∣ ∣ ||\delta\vec{b}||=||\bold A(\delta\vec{x})||\le||\bold A||\cdot||\delta\vec{x}||\\\ \\ ||\vec{x}||=||\bold{A}^{-1}\vec{b}||\le||\bold A^{-1}||\cdot||\vec{b}|| ∣∣δb∣∣=∣∣A(δx)∣∣≤∣∣A∣∣⋅∣∣δx∣∣ ∣∣x∣∣=∣∣A−1b∣∣≤∣∣A−1∣∣⋅∣∣b∣∣
故
∣ ∣ δ x ⃗ ∣ ∣ ∣ ∣ x ⃗ ∣ ∣ ≥ ∣ ∣ δ b ⃗ ∣ ∣ ∣ ∣ A ∣ ∣ 1 ∣ ∣ x ⃗ ∣ ∣ ≥ 1 ∣ ∣ A − 1 ∣ ∣ ⋅ ∣ ∣ A ∣ ∣ ∣ ∣ δ b ⃗ ∣ ∣ ∣ ∣ b ⃗ ∣ ∣ ( a − 2 ) \frac{||\delta\vec{x}||}{||\vec{x}||}\ge\frac{||\delta\vec{b}||}{||\bold A||}\frac{1}{||\vec{x}||}\ge\frac{1}{||\bold A^{-1}||\cdot||\bold A||}\frac{||\delta\vec{b}||}{||\vec{b}||}\quad(a-2) ∣∣x∣∣∣∣δx∣∣≥∣∣A∣∣∣∣δb∣∣∣∣x∣∣1≥∣∣A−1∣∣⋅∣∣A∣∣1∣∣b∣∣∣∣δb∣∣(a−2)
上面的讨论给出了,常数项波动时,解的相对误差的上、下界,且有
∣ ∣ A − 1 ∣ ∣ ⋅ ∣ ∣ A ∣ ∣ ≥ 1 ||\bold A^{-1}||\cdot||\bold A||\ge1 ∣∣A−1∣∣⋅∣∣A∣∣≥1
(2) 设系数矩阵有微小的扰动 δ A \delta\bold A δA,使得方程组的解发生改变 δ x ⃗ \delta\vec{x} δx ,即:
( A + δ A ) ( x ⃗ + δ x ⃗ ) = b ⃗ ⟹ ( A + δ A ) ( δ x ⃗ ) = A [ E + ( δ A ) A − 1 ] ( δ x ⃗ ) = − ( δ A ) x ⃗ (\bold A+\delta\bold A)(\vec{x}+\delta\vec{x})=\vec{b}\Longrightarrow(\bold A+\delta\bold A)(\delta\vec{x})=\bold A[\bold E+(\delta\bold A)\bold A^{-1}](\delta\vec{x})=-(\delta\bold{A})\vec{x} (A+δA)(x+δx)=b⟹(A+δA)(δx)=A[E+(δA)A−1](δx)=−(δA)x
若 ∣ ∣ ( δ A ) A − 1 ∣ ∣ v < 1 ||(\delta\bold A)\bold A^{-1}||_v<1 ∣∣(δA)A−1∣∣v<1 ,则 E + ( δ A ) A − 1 \bold E+(\delta\bold A)\bold A^{-1} E+(δA)A−1 可逆,且
∣ ∣ ( E + ( δ A ) A − 1 ) − 1 ∣ ∣ v ≤ 1 1 − ∣ ∣ ( δ A ) A − 1 ∣ ∣ v ||(\bold E+(\delta\bold A)\bold A^{-1})^{-1}||_v\le\frac{1}{1-||(\delta\bold A)\bold A^{-1}||_v} ∣∣(E+(δA)A−1)−1∣∣v≤1−∣∣(δA)A−1∣∣v1
那么
∣ ∣ δ x ⃗ ∣ ∣ = ∣ ∣ [ E + ( δ A ) A − 1 ] − 1 ∣ ∣ v ⋅ ∣ ∣ A − 1 ∣ ∣ v ⋅ ∣ ∣ δ A ∣ ∣ v ⋅ ∣ ∣ x ⃗ ∣ ∣ ≤ ∣ ∣ A − 1 ∣ ∣ v ⋅ ∣ ∣ δ A ∣ ∣ v ⋅ ∣ ∣ x ⃗ ∣ ∣ 1 − ∣ ∣ ( δ A ) A − 1 ∣ ∣ v ||\delta\vec{x}||=||[\bold E+(\delta\bold A)\bold A^{-1}]^{-1}||_v\cdot||\bold A^{-1}||_v\cdot||\delta\bold{A}||_v\cdot||\vec{x}||\le\frac{||\bold A^{-1}||_v\cdot||\delta\bold{A}||_v\cdot||\vec{x}||}{1-||(\delta\bold A)\bold A^{-1}||_v} ∣∣δx∣∣=∣∣[E+(δA)A−1]−1∣∣v⋅∣∣A−1∣∣v⋅∣∣δA∣∣v⋅∣∣x∣∣≤1−∣∣(δA)A−1∣∣v∣∣A−1∣∣v⋅∣∣δA∣∣v⋅∣∣x∣∣
若更严格的要求 ∣ ∣ ( δ A ) A − 1 ∣ ∣ v < ∣ ∣ δ A ∣ ∣ v ⋅ ∣ ∣ A − 1 ∣ ∣ v < 1 ||(\delta\bold A)\bold A^{-1}||_v<||\delta\bold A||_v\cdot||\bold A^{-1}||_v<1 ∣∣(δA)A−1∣∣v<∣∣δA∣∣v⋅∣∣A−1∣∣v<1,则有:
∣ ∣ δ x ⃗ ∣ ∣ ∣ ∣ x ⃗ ∣ ∣ ≤ ∣ ∣ A − 1 ∣ ∣ v ⋅ ∣ ∣ A ∣ ∣ v ⋅ ∣ ∣ δ A ∣ ∣ v ∣ ∣ A ∣ ∣ 1 − ∣ ∣ A − 1 ∣ ∣ v ⋅ ∣ ∣ A ∣ ∣ v ⋅ ∣ ∣ δ A ∣ ∣ v ∣ ∣ A ∣ ∣ ( b ) \frac{||\delta\vec{x}||}{||\vec{x}||}\le\frac{||\bold A^{-1}||_v\cdot||\bold A||_v\cdot\dfrac{||\delta\bold{A}||_v}{||\bold A||}}{1-||\bold A^{-1}||_v\cdot||\bold{A}||_v\cdot\dfrac{||\delta\bold{A}||_v}{||\bold A||}}\quad(b) ∣∣x∣∣∣∣δx∣∣≤1−∣∣A−1∣∣v⋅∣∣A∣∣v⋅∣∣A∣∣∣∣δA∣∣v∣∣A−1∣∣v⋅∣∣A∣∣v⋅∣∣A∣∣∣∣δA∣∣v(b)
或者
( A + δ A ) ( δ x ⃗ ) + ( δ A ) x ⃗ = A ( δ x ⃗ ) + ( δ A ) ( δ x ⃗ + x ⃗ ) = 0 ⟹ δ x ⃗ = − A − 1 ( δ A ) ( δ x ⃗ + x ⃗ ) (\bold A+\delta\bold A)(\delta\vec{x})+(\delta\bold A)\vec{x}=\bold A(\delta\vec{x})+(\delta\bold{A})(\delta\vec{x}+\vec{x})=0\Longrightarrow\delta\vec{x}=-\bold A^{-1}(\delta\bold{A})(\delta\vec{x}+\vec{x}) (A+δA)(δx)+(δA)x=A(δx)+(δA)(δx+x)=0⟹δx=−A−1(δA)(δx+x)
故
∣ ∣ δ x ⃗ ∣ ∣ ∣ ∣ x ⃗ + δ x ⃗ ∣ ∣ ≤ ∣ ∣ A − 1 ∣ ∣ ⋅ ∣ ∣ A ∣ ∣ ⋅ ∣ ∣ δ A ∣ ∣ ∣ ∣ A ∣ ∣ ( c ) \frac{||\delta\vec{x}||}{||\vec{x}+\delta\vec{x}||}\le||\bold{A}^{-1}||\cdot||\bold{A}||\cdot\frac{||\delta\bold{A}||}{||\bold{A}||}\quad(c) ∣∣x+δx∣∣∣∣δx∣∣≤∣∣A−1∣∣⋅∣∣A∣∣⋅∣∣A∣∣∣∣δA∣∣(c)
上式给出了系数矩阵发生改变时,方程解的扰动。
结合 ( a ) ( c ) (a) (c) (a)(c) 式可以发现方程解相对误差的上界均与系数 ∣ ∣ A − 1 ∣ ∣ ⋅ ∣ ∣ A ∣ ∣ ||\bold A^{-1}||\cdot||\bold{A}|| ∣∣A−1∣∣⋅∣∣A∣∣ 相关。该系数越大,可能引起的相对误差就越大,它反映了方程组的病态程度。
定义 对于非奇异矩阵 A ∈ R n × n A\in\mathbb{R}^{n\times n} A∈Rn×n 而言,将 ∣ ∣ A − 1 ∣ ∣ ⋅ ∣ ∣ A ∣ ∣ ||\bold A^{-1}||\cdot||\bold{A}|| ∣∣A−1∣∣⋅∣∣A∣∣ 称作它的条件数,记作 c o n d ( A ) cond(\bold A) cond(A) ,即
c o n d ( A ) = ∣ ∣ A − 1 ∣ ∣ ⋅ ∣ ∣ A ∣ ∣ cond(\bold A)=||\bold A^{-1}||\cdot||\bold{A}|| cond(A)=∣∣A−1∣∣⋅∣∣A∣∣
常用的矩阵条件数——谱条件数:
c o n d ( A ) v = ∣ ∣ A ∣ ∣ 2 ∣ ∣ A − 1 ∣ ∣ 2 = λ m a x ( A T A ) λ m i n ( A A T ) = λ m a x ( A T A ) λ m i n ( A T A ) cond(\bold A)_v=||\bold A||_2||\bold A^{-1}||_2=\sqrt{\frac{\lambda_{max}(\bold A^T\bold A)}{\lambda_{min}(\bold A\bold A^T)}}=\sqrt{\frac{\lambda_{max}(\bold A^T\bold A)}{\lambda_{min}(\bold A^T\bold A)}} cond(A)v=∣∣A∣∣2∣∣A−1∣∣2=λmin(AAT)λmax(ATA)=λmin(ATA)λmax(ATA)
证明:由于 A \bold A A 可逆,故 A A T \bold{AA^T} AAT 为正定矩阵,其所有特征值均为正,又
∣ ∣ A − 1 ∣ ∣ 2 = λ m a x ( A − T A − 1 ) = λ m a x [ ( A A T ) − 1 ] = 1 λ m i n ( A A T ) ||\bold A^{-1}||_2=\sqrt{\lambda_{max}(\bold A^{-T}\bold A^{-1})}=\sqrt{\lambda_{max}[(\bold A\bold A^{T})^{-1}]}=\sqrt{\frac{1}{\lambda_{min}(\bold A\bold A^T)}}\quad ∣∣A−1∣∣2=λmax(A−TA−1)=λmax[(AAT)−1]=λmin(AAT)1
而 A A T \bold{AA^T} AAT 与 A T A \bold{A^TA} ATA 具有相同的特征值,因为:
( A B ) u ⃗ = λ u ⃗ ⟹ ( B A ) B u ⃗ = λ ( B u ⃗ ) (\bold{AB})\vec{u}=\lambda\vec{u}\Longrightarrow\bold{(BA)B}\vec{u}=\lambda(\bold{B}\vec{u}) (AB)u=λu⟹(BA)Bu=λ(Bu)
令 B = A T \bold B=\bold A^T B=AT 即可。(证毕)
2. 条件数的性质
( 1 ) c o n d ( A ) ≥ 1 ; ( 2 ) ∀ c ∈ R , c ≠ 0 , c o n d ( c A ) = ∣ ∣ c A ∣ ∣ ⋅ ∣ ∣ 1 c A − 1 ∣ ∣ = c o n d ( A ) ; ( 3 ) 正交矩阵的谱条件数为 1 ,即 c o n d ( Q ) 2 = λ m a x ( Q T Q ) λ m i n ( Q Q T ) = 1 ( 4 ) 若 A 为非奇异矩阵, Q 为正交矩阵,则 c o n d ( A ) 2 = c o n d ( Q A ) 2 = c o n d ( A Q ) 2 c o n d ( Q A ) 2 = λ m a x ( A T Q T Q A ) λ m i n ( Q A A T Q T ) = λ m a x ( A T A ) λ m i n ( A A T ) = c o n d ( A ) 2 c o n d ( A Q ) 2 = λ m a x ( Q T A T A Q ) λ m i n ( A Q Q T A T ) = λ m a x ( A T A ) λ m i n ( A A T ) = c o n d ( A ) 2 注:正交变换不改变矩阵的特征值。 \begin{aligned} & (1)\ cond(\bold A)\ge1;\\\\ & (2)\ \forall c\in\mathbb{R},c\ne0,cond(c\bold A)=||c\bold A||\cdot||\frac{1}{c}\bold{A}^{-1}||=cond(\bold A);\\\\ & (3)\ 正交矩阵的谱条件数为1,即\\\\ & \qquad\qquad cond(\bold Q)_2=\sqrt{\frac{\lambda_{max}(\bold Q^T\bold Q)}{\lambda_{min}(\bold Q\bold Q^T)}}=1\\\\ & (4)\ 若\bold A为非奇异矩阵,\bold Q为正交矩阵,则\ cond(\bold A)_2=cond(\bold{QA})_2=cond(\bold{AQ})_2\\\\ &\qquad\qquad cond(\bold QA)_2=\sqrt{\frac{\lambda_{max}(\bold {A^TQ^T}\bold {QA})}{\lambda_{min}(\bold{QA}\bold {A^TQ^T})}}=\sqrt{\frac{\lambda_{max}(\bold {A^T}\bold {A})}{\lambda_{min}(\bold{A}\bold {A^T})}}=cond(\bold A)_2\\\\ &\qquad\qquad cond(\bold {AQ})_2=\sqrt{\frac{\lambda_{max}(\bold {Q^TA^T}\bold {AQ})}{\lambda_{min}(\bold {AQ}\bold {Q^TA^T})}}=\sqrt{\frac{\lambda_{max}(\bold {A^T}\bold {A})}{\lambda_{min}(\bold {A}\bold {A^T})}}=cond(\bold A)_2\\\\ &注:正交变换不改变矩阵的特征值。 \end{aligned} (1) cond(A)≥1;(2) ∀c∈R,c=0,cond(cA)=∣∣cA∣∣⋅∣∣c1A−1∣∣=cond(A);(3) 正交矩阵的谱条件数为1,即cond(Q)2=λmin(QQT)λmax(QTQ)=1(4) 若A为非奇异矩阵,Q为正交矩阵,则 cond(A)2=cond(QA)2=cond(AQ)2cond(QA)2=λmin(QAATQT)λmax(ATQTQA)=λmin(AAT)λmax(ATA)=cond(A)2cond(AQ)2=λmin(AQQTAT)λmax(QTATAQ)=λmin(AAT)λmax(ATA)=cond(A)2注:正交变换不改变矩阵的特征值。
3. 误差与残差
设线性方程
A x ⃗ = b \bold A\vec{x}=b Ax=b
的准确解为 x ⃗ = u ⃗ \vec{x}=\vec{u} x=u,而某一实际解得的向量为 v ⃗ \vec{v} v 。定义残差为:
r ⃗ ≜ b ⃗ − A v ⃗ ( 1 ) \vec{r}\triangleq\vec{b}-\bold A\vec{v}\quad(1) r≜b−Av(1)
定义绝对误差为:
e ⃗ ≜ v ⃗ − u ⃗ ( 2 ) \vec{e}\triangleq\vec{v}-\vec{u}\quad(2) e≜v−u(2)
残差与误差满足关系式:
A e ⃗ = − r ⃗ ( 3 ) \bold A\vec{e}=-\vec{r}\quad(3) Ae=−r(3)
证明: A e ⃗ = A ( v ⃗ − u ⃗ ) = A v ⃗ − b ⃗ = − r ⃗ ( 证毕 ) \bold A\vec{e}=\bold{A}(\vec{v}-\vec{u})=\bold{A}\vec{v}-\vec{b}=-\vec{r}\quad(证毕) Ae=A(v−u)=Av−b=−r(证毕)
根据式(3)便可通过残差对误差进行估计:
∣ ∣ e ⃗ ∣ ∣ = ∣ ∣ − A − 1 r ⃗ ∣ ∣ ≤ ∣ ∣ A − 1 ∣ ∣ ⋅ ∣ ∣ r ⃗ ∣ ∣ ||\vec{e}||=||-\bold A^{-1}\vec{r}||\le||\bold A^{-1}||\cdot||\vec{r}|| ∣∣e∣∣=∣∣−A−1r∣∣≤∣∣A−1∣∣⋅∣∣r∣∣
不过,绝对误差的大小往往没有太大的实际意义,更有意义的是相对误差 ∣ ∣ e ⃗ ∣ ∣ ∣ ∣ u ⃗ ∣ ∣ \dfrac{||\vec{e}||}{||\vec{u}||} ∣∣u∣∣∣∣e∣∣ 的大小。
一方面,
∣ ∣ e ⃗ ∣ ∣ ≤ ∣ ∣ A − 1 ∣ ∣ ⋅ ∣ ∣ r ⃗ ∣ ∣ ∣ ∣ b ⃗ ∣ ∣ = ∣ ∣ A u ⃗ ∣ ∣ ≤ ∣ ∣ A ∣ ∣ ⋅ ∣ ∣ u ⃗ ∣ ∣ ⟹ 1 ∣ ∣ u ⃗ ∣ ∣ ≤ ∣ ∣ A ∣ ∣ ⋅ 1 ∣ ∣ b ⃗ ∣ ∣ } ⟹ ∣ ∣ e ⃗ ∣ ∣ ∣ ∣ u ⃗ ∣ ∣ ≤ ∣ ∣ A − 1 ∣ ∣ ⋅ ∣ ∣ A ∣ ∣ ⋅ ∣ ∣ r ⃗ ∣ ∣ ∣ ∣ b ⃗ ∣ ∣ \left.\begin{matrix} ||\vec{e}||\le||\bold A^{-1}||\cdot||\vec{r}|| \\ \\ ||\vec{b}||=||\bold A\vec{u}||\le||\bold A||\cdot||\vec{u}||\Longrightarrow\dfrac{1}{||\vec{u}||}\le||\bold A||\cdot\dfrac{1}{||\vec{b}||} \end {matrix}\right\} \Longrightarrow \dfrac{||\vec{e}||}{||\vec{u}||}\le||\bold A^{-1}||\cdot||\bold A||\cdot\frac{||\vec{r}||}{||\vec{b}||} ∣∣e∣∣≤∣∣A−1∣∣⋅∣∣r∣∣∣∣b∣∣=∣∣Au∣∣≤∣∣A∣∣⋅∣∣u∣∣⟹∣∣u∣∣1≤∣∣A∣∣⋅∣∣b∣∣1⎭ ⎬ ⎫⟹∣∣u∣∣∣∣e∣∣≤∣∣A−1∣∣⋅∣∣A∣∣⋅∣∣b∣∣∣∣r∣∣
另一方面,
∣ ∣ r ⃗ ∣ ∣ = ∣ ∣ A e ⃗ ∣ ∣ ≤ ∣ ∣ A ∣ ∣ ⋅ ∣ ∣ e ⃗ ∣ ∣ ⟹ ∣ ∣ e ⃗ ∣ ∣ ≥ ∣ ∣ r ⃗ ∣ ∣ ⋅ 1 ∣ ∣ A ∣ ∣ ∣ ∣ u ⃗ ∣ ∣ = ∣ ∣ A − 1 b ⃗ ∣ ∣ ≤ ∣ ∣ A − 1 ∣ ∣ ⋅ ∣ ∣ b ⃗ ∣ ∣ } ⟹ ∣ ∣ e ⃗ ∣ ∣ ∣ ∣ u ⃗ ∣ ∣ ≥ 1 ∣ ∣ A − 1 ∣ ∣ ⋅ ∣ ∣ A ∣ ∣ ⋅ ∣ ∣ r ⃗ ∣ ∣ ∣ ∣ b ⃗ ∣ ∣ \left.\begin{matrix} ||\vec{r}||=||\bold A\vec{e}||\le||\bold A||\cdot||\vec{e}||\Longrightarrow||\vec{e}||\ge||\vec{r}||\cdot\dfrac{1}{||\bold A||} \\ \\ ||\vec{u}||=||\bold A^{-1}\vec{b}||\le||\bold A^{-1}||\cdot||\vec{b}|| \end {matrix}\right\} \Longrightarrow \dfrac{||\vec{e}||}{||\vec{u}||}\ge\dfrac{1}{||\bold A^{-1}||\cdot||\bold A||}\cdot\frac{||\vec{r}||}{||\vec{b}||} ∣∣r∣∣=∣∣Ae∣∣≤∣∣A∣∣⋅∣∣e∣∣⟹∣∣e∣∣≥∣∣r∣∣⋅∣∣A∣∣1∣∣u∣∣=∣∣A−1b∣∣≤∣∣A−1∣∣⋅∣∣b∣∣⎭ ⎬ ⎫⟹∣∣u∣∣∣∣e∣∣≥∣∣A−1∣∣⋅∣∣A∣∣1⋅∣∣b∣∣∣∣r∣∣
综上,
1 c o n d ( A ) ⋅ ∣ ∣ r ⃗ ∣ ∣ ∣ ∣ b ⃗ ∣ ∣ ≤ ∣ ∣ e ⃗ ∣ ∣ ∣ ∣ u ⃗ ∣ ∣ ≤ c o n d ( A ) ⋅ ∣ ∣ r ⃗ ∣ ∣ ∣ ∣ b ⃗ ∣ ∣ \dfrac{1}{cond(\bold A)}\cdot\frac{||\vec{r}||}{||\vec{b}||}\le \dfrac{||\vec{e}||}{||\vec{u}||}\le cond(\bold A)\cdot\frac{||\vec{r}||}{||\vec{b}||} cond(A)1⋅∣∣b∣∣∣∣r∣∣≤∣∣u∣∣∣∣e∣∣≤cond(A)⋅∣∣b∣∣∣∣r∣∣
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
