matlab p码,基于MATLAB的turbo码仿真

该楼层疑似违规已被系统折叠 隐藏此楼查看此楼

谁能帮忙把wuyufei中两个译码算法 log-map 和sova 改改,合在一张图比较下 。

1.

function L_all = logmapo(rec_s,g,L_a,ind_dec)

% Copyright Nov 1998, Yufei Wu

% MPRG lab, Virginia Tech.

% for academic use only

% Log_MAP algorithm using straightforward method to compute branch metrics

% no approximation is used.

% Can be simplified to Max-Log-MAP by using approximation ln(e^x+e^y) = max(x,y).

% Input: rec_s: scaled received bits.

% rec_s = 0.5 * L_c * yk = ( 2 * a * rate * Eb/N0 ) * yk

% g: code generator for the component RSC code, in binary matrix form.

% L_a: a priori info. for the current decoder,

% scrambled version of extrinsic Inftyo. of the previous decoder.

% ind_dec: index of decoder. Either 1 or 2.

% Encoder 1 is assumed to be terminated, while encoder 2 is open.

%

% Output: L_all: log-likelihood ratio of the symbols. Complete information.

% Total number of bits: Inftyo. + tail

L_total = length(rec_s)/2;

[n,K] = size(g);

m = K - 1;

nstates = 2^m; % number of states in the trellis

% Set up the trellis

[next_out, next_state, last_out, last_state] = trellis(g);

Infty = 1e10;

% Initialization of Alpha

Alpha(1,1) = 0;

Alpha(1,2:nstates) = -Infty*ones(1,nstates-1);

% Initialization of Beta

if ind_dec==1

Beta(L_total,1) = 0;

Beta(L_total,2:nstates) = -Infty*ones(1,nstates-1);

elseif ind_dec==2

Beta(L_total,1:nstates) = zeros(1,nstates);

else

fprintf('ind_dec is limited to 1 and 2!\n');

end

% Trace forward, compute Alpha

for k = 2:L_total+1

for state2 = 1:nstates

gamma = -Infty*ones(1,nstates);

gamma(last_state(state2,1)) = (-rec_s(2*k-3)+rec_s(2*k-2)*last_out(state2,2))....

-log(1+exp(L_a(k-1)));

gamma(last_state(state2,2)) = (rec_s(2*k-3)+rec_s(2*k-2)*last_out(state2,4))....

+L_a(k-1)-log(1+exp(L_a(k-1)));

if(sum(exp(gamma+Alpha(k-1,:)))<1e-300)

Alpha(k,state2)=-Infty;

else

Alpha(k,state2) = log( sum( exp( gamma+Alpha(k-1,:) ) ) );

end

end

tempmax(k) = max(Alpha(k,:));

Alpha(k,:) = Alpha(k,:) - tempmax(k);

end

% Trace backward, compute Beta

for k = L_total-1:-1:1

for state1 = 1:nstates

gamma = -Infty*ones(1,nstates);

gamma(next_state(state1,1)) = (-rec_s(2*k+1)+rec_s(2*k+2)*next_out(state1,2))....

-log(1+exp(L_a(k+1)));

gamma(next_state(state1,2)) = (rec_s(2*k+1)+rec_s(2*k+2)*next_out(state1,4))....

+L_a(k+1)-log(1+exp(L_a(k+1)));

if(sum(exp(gamma+Beta(k+1,:)))<1e-300)

Beta(k,state1)=-Infty;

else

Beta(k,state1) = log(sum(exp(gamma+Beta(k+1,:))));

end

end

Beta(k,:) = Beta(k,:) - tempmax(k+1);

end

% Compute the soft output, log-likelihood ratio of symbols in the frame

for k = 1:L_total

for state2 = 1:nstates

gamma0 = (-rec_s(2*k-1)+rec_s(2*k)*last_out(state2,2))....

-log(1+exp(L_a(k)));

gamma1 = (rec_s(2*k-1)+rec_s(2*k)*last_out(state2,4))...

+L_a(k)-log(1+exp(L_a(k)));

temp0(state2) = exp(gamma0 + Alpha(k,last_state(state2,1)) + Beta(k,state2));

temp1(state2) = exp(gamma1 + Alpha(k,last_state(state2,2)) + Beta(k,state2));

end

L_all(k) = log(sum(temp1)) - log(sum(temp0));

end

2.

function L_all = sova(rec_s, g, L_a, ind_dec)

% This function implememts Soft Output Viterbi Algorithm in trace back mode

% Input:

% rec_s: scaled received bits. rec_s(k) = 0.5 * L_c(k) * y(k)

% L_c = 4 * a * Es/No, reliability value of the channel

% y: received bits

% g: encoder generator matrix in binary form, g(1,:) for feedback, g(2,:) for feedforward

% L_a: a priori information about the info. bits. Extrinsic info. from the previous

% component decoder

% ind_dec: index of the component decoder.

% =1: component decoder 1; The trellis is terminated to all zero state

% =2: component decoder 2; The trellis is not perfectly terminated.

% Output:

% L_all: log ( P(x=1|y) ) / ( P(x=-1|y) )

%

% Copyright: Yufei Wu, Nov. 1998

% MPRG lab, Virginia Tech

% for academic use only

% Frame size, info. + tail bits

L_total = length(L_a);

[n,K] = size(g);

m = K - 1;

nstates = 2^m;

Infty = 1e10;

% SOVA window size. Make decision after 'delta' delay. Decide bit k when received bits

% for bit (k+delta) are processed. Trace back from (k+delta) to k.

delta = 30;

% Set up the trellis defined by g.

[next_out, next_state, last_out, last_state] = trellis(g);

% Initialize path metrics to -Infty

for t=1:L_total+1

for state=1:nstates

path_metric(state,t) = -Infty;

end

end

% Trace forward to compute all the path metrics

path_metric(1,1) = 0;

for t=1:L_total

y = rec_s(2*t-1:2*t);

for state=1:nstates

sym0 = last_out(state,1:2);

sym1 = last_out(state,3:4);

state0 = last_state(state,1);

state1 = last_state(state,2);

Mk0 = y*sym0' - L_a(t)/2 + path_metric(state0,t);

Mk1 = y*sym1' + L_a(t)/2 + path_metric(state1,t);

if Mk0>Mk1

path_metric(state,t+1)=Mk0;

Mdiff(state,t+1) = Mk0 - Mk1;

prev_bit(state, t+1) = 0;

else

path_metric(state,t+1)=Mk1;

Mdiff(state,t+1) = Mk1 - Mk0;

prev_bit(state,t+1) = 1;

end

end

end

% For decoder 1, trace back from all zero state,

% for decoder two, trace back from the most likely state

if ind_dec == 1

mlstate(L_total+1) = 1;

else

mlstate(L_total+1) = find( path_metric(:,L_total+1)==max(path_metric(:,L_total+1)) );

end

% Trace back to get the estimated bits, and the most likely path

for t=L_total:-1:1

est(t) = prev_bit(mlstate(t+1),t+1);

mlstate(t) = last_state(mlstate(t+1), est(t)+1);

end

% Find the minimum delta that corresponds to a compitition path with different info. bit estimation.

% Give the soft output

for t=1:L_total

llr = Infty;

for i=0:delta

if t+i

bit = 1-est(t+i);

temp_state = last_state(mlstate(t+i+1), bit+1);

for j=i-1:-1:0

bit = prev_bit(temp_state,t+j+1);

temp_state = last_state(temp_state, bit+1);

end

if bit~=est(t)

llr = min( llr,Mdiff(mlstate(t+i+1), t+i+1) );

end

end

end

L_all(t) = (2*est(t) - 1) * llr;

end


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部