多变量函数的近似公式

单变量导数的公式如下:
f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x ( 1 ) f^{'}(x)=\lim \limits_{ \Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \qquad (1) f(x)=Δx0limΔxf(x+Δx)f(x)(1)
(1)式等价于
f ′ ( x ) ≈ f ( x + Δ x ) − f ( x ) Δ x Δ x 取 很 小 的 值 f^{'}(x) \approx \frac{f(x+\Delta x)-f(x)}{\Delta x} \qquad \Delta x取很小的值 f(x)Δxf(x+Δx)f(x)Δx
f ( x + Δ x ) − f ( x ) ≈ f ′ ( x ) ⋅ Δ x f(x+\Delta x)-f(x) \approx f^{'}(x) ·\Delta x f(x+Δx)f(x)f(x)Δx

以此推广到多变量函数的近似公式
f ( x + Δ x , y + Δ y ) − f ( x , y ) ≈ ∂ f ∂ x ⋅ Δ x + ∂ f ∂ y ⋅ Δ y f(x+\Delta x,y+\Delta y)-f(x,y) \approx \frac{\partial f}{\partial x} ·\Delta x+\frac{\partial f}{\partial y} ·\Delta y f(x+Δx,y+Δy)f(x,y)xfΔx+yfΔy
Δ z = f ( x + Δ x , y + Δ y ) − f ( x , y ) \Delta z=f(x+\Delta x,y+\Delta y)-f(x,y) Δz=f(x+Δx,y+Δy)f(x,y),即 Δ z = ∂ f ∂ x ⋅ Δ x + ∂ f ∂ y ⋅ Δ y \Delta z=\frac{\partial f}{\partial x} ·\Delta x+\frac{\partial f}{\partial y} ·\Delta y Δz=xfΔx+yfΔy
表示成内积的形式即为:
Δ z = ( ∂ f ∂ x , ∂ f ∂ y ) . ( Δ x , Δ y ) \Delta z=(\frac{\partial f}{\partial x} ,\frac{\partial f}{\partial y} ).(\Delta x,\Delta y) Δz=(xf,yf).(Δx,Δy)


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部