MapReduce关系代数运算
常见关系代数运算包括:选择、投影、并、交、差以及自然连接操作等,都可以十分容易利用MapReduce框架进行并行化计算
| NAME | SEX | AGE |
| 小明 | 男 | 25 |
| 小红 | 女 | 18 |
| 小张 | 男 | 22 |
| 小米 | 女 | 23 |
| 小丽 | 女 | 21 |
| 小王 | 男 | 19 |
| 小美 | 女 | 25 |
| 小朱 | 女 | 26 |
选择操作
将关系R的数据存储在relationR文件,然后移入HDFS下的data文件夹,如代码1-1
代码1-1
root@lejian:/data# cat relationR 小明 男 25 小红 女 18 小张 男 22 小米 女 23 小丽 女 21 小王 男 19 小美 女 25 小朱 女 26 root@lejian:/data# hadoop fs -put selection /data root@lejian:/data# hadoop fs -ls -R /data -rw-r--r-- 1 root supergroup 112 2017-01-07 15:03 /data/relationR
对于关系R的应用条件C,选择性别为女的数据,只需在Map阶段对每个输入的记录进行判断,将满足条件的数据输出即可,输出键值为(key,null)。Reduce阶段无需做额外的工作
代码1-2
sex 女
代码1-3
package com.hadoop.mapreduce;public class Person {private String name;private String sex;private int age;public Person(String line) {super();String[] lines = line.split(" ");this.name = lines[0];this.sex = lines[1];this.age = Integer.parseInt(lines[2]);}public String getName() {return name;}public String getSex() {return sex;}public int getAge() {return age;}public String getVal(String col) {if ("name".equals(col)) {return name;}if ("sex".equals(col)) {return sex;}return age + "";}@Overridepublic String toString() {return name + " " + sex + " " + age;}}
代码1-4
package com.hadoop.mapreduce;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;public class SelectionMap extends Mapper {private String sex = "";private Text val = new Text();protected void setup(Context context) throws java.io.IOException, InterruptedException {Configuration conf = context.getConfiguration();sex = conf.get("sex");};protected void map(LongWritable key, Text value, Context context) throws java.io.IOException, InterruptedException {Person person = new Person(value.toString());if (sex.equals(person.getVal("sex"))) {val.set(person.toString());context.write(val, NullWritable.get());}};}
代码1-5
package com.hadoop.mapreduce;import java.io.IOException;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;public class Selection {public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {if (args == null || args.length != 2) {throw new RuntimeException("请输入输入路径、输出路径");}Configuration conf = new Configuration();conf.addResource("conf.xml");Job job = Job.getInstance(conf);job.setJobName("Selection");job.setMapperClass(SelectionMap.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(NullWritable.class);FileInputFormat.addInputPaths(job, args[0]);FileOutputFormat.setOutputPath(job, new Path(args[1]));System.exit(job.waitForCompletion(true) ? 0 : 1);}}
运行代码1-5,运行结果如代码1-6
代码1-6
root@lejian:/data# hadoop jar selection.jar com.hadoop.mapreduce.Selection /data /output ………… root@lejian:/data# hadoop fs -ls -R /output -rw-r--r-- 1 root supergroup 0 2017-01-07 15:05 /output/_SUCCESS -rw-r--r-- 1 root supergroup 70 2017-01-07 15:05 /output/part-r-00000 root@lejian:/data# hadoop fs -cat /output/part-r-00000 小丽 女 21 小朱 女 26 小米 女 23 小红 女 18 小美 女 25
投影操作
例如在关系R上应用投影操作获得属性AGE的所有值,我们只需要在Map阶段将每条记录的AGE属性和NullWritable输出,而Reduce端仅获取key即可,注意,此时投影操作具有去重功能
代码1-7
package com.hadoop.mapreduce;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;public class ProjectionMap extends Mapper {private IntWritable age = new IntWritable();protected void map(LongWritable key, Text value, Context context) throws java.io.IOException, InterruptedException {Person person = new Person(value.toString());age.set(person.getAge());context.write(age, NullWritable.get());};}
代码1-8
package com.hadoop.mapreduce;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Reducer;public class ProjectionReduce extends Reducer {protected void reduce(IntWritable key, Iterable values, Context context) throws java.io.IOException, InterruptedException {context.write(key, NullWritable.get());};}
代码1-9
package com.hadoop.mapreduce;import java.io.IOException;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;public class Projection {public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {if (args == null || args.length != 2) {throw new RuntimeException("请输入输入路径、输出路径");}Configuration conf = new Configuration();Job job = Job.getInstance(conf);job.setJobName("Projection");job.setMapperClass(ProjectionMap.class);job.setReducerClass(ProjectionReduce.class);job.setOutputKeyClass(IntWritable.class);job.setOutputValueClass(NullWritable.class);FileInputFormat.addInputPaths(job, args[0]);FileOutputFormat.setOutputPath(job, new Path(args[1]));System.exit(job.waitForCompletion(true) ? 0 : 1);}}
运行代码1-9,运行结果如代码1-10
代码1-10
root@lejian:/data# hadoop jar projection.jar com.hadoop.mapreduce.Projection /data /output ………… root@lejian:/data# hadoop fs -ls -R /output -rw-r--r-- 1 root supergroup 0 2017-01-07 15:52 /output/_SUCCESS -rw-r--r-- 1 root supergroup 21 2017-01-07 15:52 /output/part-r-00000 root@lejian:/data# hadoop fs -cat /output/part-r-00000 18 19 21 22 23 25 26
交运算
如果有一个关系A和关系B为同一个模式,希望得到关系A和关系B的交集,那么在Map阶段对于A和B中的每一条记录r输出(r,1),在Reduce阶段汇总计数,如果计数为2,则将该条记录输出。依旧以Person类为例,这里把Person作为主键,为了使得关系A和关系B相同的Person发送到同一个Reduce节点进行计算,需要对原先代码1-3的Person类进行修改,如代码1-11,MapReduce默认会先调用对象的compareTo方法进行对象间的比较,如果对象相等,再比较其hashCode,如果hashCode相等,则认为这两个对象为同一个对象
修改代码1-3的Person类为代码1-11
代码1-11
package com.hadoop.mapreduce;import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;import org.apache.hadoop.io.WritableComparable;public class Person implements WritableComparable {private String name;private String sex;private int age;public Person() {super();// TODO Auto-generated constructor stub}public Person(String line) {super();String[] lines = line.split(" ");this.name = lines[0];this.sex = lines[1];this.age = Integer.parseInt(lines[2]);}public String getName() {return name;}public String getSex() {return sex;}public int getAge() {return age;}public String getVal(String col) {if ("name".equals(col)) {return name;}if ("sex".equals(col)) {return sex;}return age + "";}@Overridepublic String toString() {return name + " " + sex + " " + age;}@Overridepublic int hashCode() {int res = 20;res = name.hashCode() + 10 * res;res = sex.hashCode() + 10 * res;res = age + 10 * res;return res;}@Overridepublic void write(DataOutput out) throws IOException {out.writeUTF(name);out.writeUTF(sex);out.writeInt(age);}@Overridepublic void readFields(DataInput in) throws IOException {name = in.readUTF();sex = in.readUTF();age = in.readInt();}@Overridepublic int compareTo(Person o) {// TODO Auto-generated method stubif (hashCode() > o.hashCode()) {return 1;}if (hashCode() < o.hashCode()) {return -1;}return 0;}public static void main(String[] args) {System.out.println(new Person("Lily female 22").hashCode());}}
将关系A和关系B移入HDFS下的data文件夹,如代码1-12
root@lejian:/data# cat relationA Tom male 21 Amy female 19 Daivd male 16 Lily female 22 Lucy female 20 John male 19 Rose female 19 Jojo female 26 root@lejian:/data# cat relationB Daivd male 16 Jack male 15 Lily female 22 Lucy female 20 Tom male 25 root@lejian:/data# hadoop fs -put relation* /data root@lejian:/data# hadoop fs -ls -R /data -rw-r--r-- 1 root supergroup 113 2017-01-07 20:48 /data/relationA -rw-r--r-- 1 root supergroup 69 2017-01-07 20:48 /data/relationB
代码1-13
package com.hadoop.mapreduce;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;public class IntersectionMap extends Mapper {private static final IntWritable ONE = new IntWritable(1);protected void map(LongWritable key, Text value, Context context) throws java.io.IOException, InterruptedException {Person person = new Person(value.toString());context.write(person, ONE);};}
代码1-14
package com.hadoop.mapreduce;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Reducer;public class IntersectionReduce extends Reducer {protected void reduce(Person key, Iterable values, Context context) throws java.io.IOException, InterruptedException {int count = 0;for (IntWritable val : values) {count += val.get();}if (count == 2) {context.write(key, NullWritable.get());}};
}
代码1-15
package com.hadoop.mapreduce;import java.io.IOException;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;public class Intersection {public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {if (args == null || args.length != 2) {throw new RuntimeException("请输入输入路径、输出路径");}Configuration conf = new Configuration();Job job = Job.getInstance(conf);job.setJobName("Intersection");job.setJarByClass(Intersection.class);job.setMapperClass(IntersectionMap.class);job.setMapOutputKeyClass(Person.class);job.setMapOutputValueClass(IntWritable.class);job.setReducerClass(IntersectionReduce.class);job.setOutputKeyClass(Person.class);job.setOutputValueClass(NullWritable.class);FileInputFormat.addInputPaths(job, args[0]);FileOutputFormat.setOutputPath(job, new Path(args[1]));System.exit(job.waitForCompletion(true) ? 0 : 1);}}
运行代码1-15,运行结果如代码1-16
代码1-16
root@lejian:/data# hadoop jar intersection.jar com.hadoop.mapreduce.Intersection /data /output ………… root@lejian:/data# hadoop fs -ls -R /output -rw-r--r-- 1 root supergroup 0 2017-01-07 20:30 /output/_SUCCESS -rw-r--r-- 1 root supergroup 44 2017-01-07 20:30 /output/part-r-00000 root@lejian:/data# hadoop fs -cat /output/part-r-00000 Daivd male 12 Lily female 22 Lucy female 20
差运算
计算关系A-关系B的差集,即找出在关系A中存在而在关系B中不存在的记录,在Map阶段,对于关系A和关系B中每一条记录r输出键值对(r,A),(r,B),在Reduce阶段检查每一条记录r和其对应的关系名称,只有关系名称只存在A,才输出记录
先显示HDFS中data文件夹下得relationA和relationB的文件内容,如代码1-17
代码1-17
root@lejian:/data# hadoop fs -ls -R /data -rw-r--r-- 1 root supergroup 113 2017-01-07 20:48 /data/relationA -rw-r--r-- 1 root supergroup 69 2017-01-07 20:48 /data/relationB root@lejian:/data# hadoop fs -cat /data/relationA Tom male 21 Amy female 19 Daivd male 16 Lily female 22 Lucy female 20 John male 19 Rose female 19 Jojo female 26 root@lejian:/data# hadoop fs -cat /data/relationB Daivd male 16 Jack male 15 Lily female 22 Lucy female 20 Tom male 25
代码1-18
package com.hadoop.mapreduce;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;public class DifferenceMap extends Mapper {private Text relationName = new Text();protected void setup(Context context) throws java.io.IOException, InterruptedException {FileSplit fileSplit = (FileSplit) context.getInputSplit();relationName.set(fileSplit.getPath().getName());};protected void map(LongWritable key, Text value, Context context) throws java.io.IOException, InterruptedException {Person person = new Person(value.toString());context.write(person, relationName);};}
代码1-19
package com.hadoop.mapreduce;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;public class DifferenceReduce extends Reducer {private String remove = "";protected void setup(Context context) throws java.io.IOException, InterruptedException {Configuration conf = context.getConfiguration();remove = conf.get("remove");};protected void reduce(Person key, Iterable values, Context context) throws java.io.IOException, InterruptedException {for (Text val : values) {if (remove.equals(val.toString())) {return;}}context.write(key, NullWritable.get());};}
代码1-20
package com.hadoop.mapreduce;import java.io.IOException;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;public class Difference {public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {if (args == null || args.length != 3) {throw new RuntimeException("请输入输入路径、输出路径和被减集合");}Configuration conf = new Configuration();conf.set("remove", args[2]);Job job = Job.getInstance(conf);job.setJobName("Difference");job.setJarByClass(Difference.class);job.setMapperClass(DifferenceMap.class);job.setMapOutputKeyClass(Person.class);job.setMapOutputValueClass(Text.class);job.setReducerClass(DifferenceReduce.class);job.setOutputKeyClass(Person.class);job.setOutputValueClass(NullWritable.class);FileInputFormat.addInputPaths(job, args[0]);FileOutputFormat.setOutputPath(job, new Path(args[1]));System.exit(job.waitForCompletion(true) ? 0 : 1);}}
运行代码1-20,运行结果如代码1-21
代码1-21
root@lejian:/data# hadoop jar difference.jar com.hadoop.mapreduce.Difference /data /output relationB ………… root@lejian:/data# hadoop fs -ls -R /output -rw-r--r-- 1 root supergroup 0 2017-01-08 08:59 /output/_SUCCESS -rw-r--r-- 1 root supergroup 69 2017-01-08 08:59 /output/part-r-00000 root@lejian:/data# hadoop fs -cat /output/part-r-00000 Tom male 21 Amy female 19 John male 19 Jojo female 26 Rose female 19
自然连接
如代码1-22,student集合的第一列是id,第二列是姓名,第三列是性别,第四列是年龄,grade集合第一列是id,第二列是科目,第三列是科目成绩,需要对student集合和grade集合做自然连接。在Map阶段将student和grade中每一条记录r作为value,而记录中的id作为key输出。在Reduce阶段则将同一键收集而来的数据根据它们的来源(student或grade)做笛卡尔积然后将结果输出
代码1-22中,将student集合和grade集合存储在HDFS下的data文件夹中
代码1-22
root@lejian:/data# cat student 1 Amy female 18 2 Tom male 19 3 Sam male 21 4 John male 19 5 Lily female 21 6 Rose female 20 root@lejian:/data# cat grade 1 Math 89 2 Math 75 4 English 85 3 English 95 5 Math 91 5 English 88 6 Math 78 6 English 99 2 English 80 root@lejian:/data# hadoop fs -put student /data root@lejian:/data# hadoop fs -put grade /data root@lejian:/data# hadoop fs -ls -R /data -rw-r--r-- 1 root supergroup 105 2017-01-08 09:59 /data/grade -rw-r--r-- 1 root supergroup 93 2017-01-08 09:59 /data/student
代码1-23
package com.hadoop.mapreduce;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;public class NaturalJoinMap extends Mapper {private String fileName = "";private Text val = new Text();private IntWritable stuKey = new IntWritable();protected void setup(Context context) throws java.io.IOException, InterruptedException {FileSplit fileSplit = (FileSplit) context.getInputSplit();fileName = fileSplit.getPath().getName();};protected void map(LongWritable key, Text value, Context context) throws java.io.IOException, InterruptedException {String[] arr = value.toString().split(" ");stuKey.set(Integer.parseInt(arr[0]));val.set(fileName + " " + value.toString());context.write(stuKey, val);};}
代码1-24
package com.hadoop.mapreduce;import java.util.ArrayList;
import java.util.List;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;public class NaturalJoinReduce extends Reducer {private Text student = new Text();private Text value = new Text();protected void reduce(IntWritable key, Iterable values, Context context) throws java.io.IOException, InterruptedException {List grades = new ArrayList();for (Text val : values) {if (val.toString().contains("student")) {student.set(studentStr(val.toString()));} else {grades.add(gradeStr(val.toString()));}}for (String grade : grades) {value.set(student.toString() + grade);context.write(value, NullWritable.get());}};private String studentStr(String line) {String[] arr = line.split(" ");StringBuilder str = new StringBuilder();for (int i = 1; i < arr.length; i++) {str.append(arr[i] + " ");}return str.toString();}private String gradeStr(String line) {String[] arr = line.split(" ");StringBuilder str = new StringBuilder();for (int i = 2; i < arr.length; i++) {str.append(arr[i] + " ");}return str.toString();}}
代码1-25
package com.hadoop.mapreduce;import java.io.IOException;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;public class NaturalJoin {public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {if (args == null || args.length != 2) {throw new RuntimeException("请输入输入路径、输出路径");}Configuration conf = new Configuration();Job job = Job.getInstance(conf);job.setJobName("NaturalJoin");job.setJarByClass(NaturalJoin.class);job.setMapperClass(NaturalJoinMap.class);job.setMapOutputKeyClass(IntWritable.class);job.setMapOutputValueClass(Text.class);job.setReducerClass(NaturalJoinReduce.class);job.setOutputKeyClass(IntWritable.class);job.setOutputValueClass(NullWritable.class);FileInputFormat.addInputPaths(job, args[0]);FileOutputFormat.setOutputPath(job, new Path(args[1]));System.exit(job.waitForCompletion(true) ? 0 : 1);}}
运行代码1-25,运行结果如代码1-26
代码1-26
root@lejian:/data# hadoop jar naturalJoin.jar com.hadoop.mapreduce.NaturalJoin /data /output ………… root@lejian:/data# hadoop fs -ls -R /output -rw-r--r-- 1 root supergroup 0 2017-01-08 11:19 /output/_SUCCESS -rw-r--r-- 1 root supergroup 237 2017-01-08 11:19 /output/part-r-00000 root@lejian:/data# hadoop fs -cat /output/part-r-00000 1 Amy female 18 Math 89 2 Tom male 19 English 80 2 Tom male 19 Math 75 3 Sam male 21 English 95 4 John male 19 English 85 5 Lily female 21 English 88 5 Lily female 21 Math 91 6 Rose female 20 English 99 6 Rose female 20 Math 78
转载于:https://www.cnblogs.com/baoliyan/p/6259278.html
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
