Sequential搭建模型

构建一个最简单的神经网络模型,它只有3个全连接层组成:

from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activationmodel = Sequential() # 顺序模型

输入层

model.add(Dense(7, input_shape=(4,)))  # Dense就是常用的全连接层
model.add(Activation('sigmoid')) # 激活函数

隐层

model.add(Dense(13))  # Dense就是常用的全连接层
model.add(Activation('sigmoid')) # 激活函数

输出层

model.add(Dense(5))
model.add(Activation('softmax'))model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=["accuracy"])model.summary()
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense_4 (Dense)              (None, 7)                 35        
_________________________________________________________________
activation_4 (Activation)    (None, 7)                 0         
_________________________________________________________________
dense_5 (Dense)              (None, 13)                104       
_________________________________________________________________
activation_5 (Activation)    (None, 13)                0         
_________________________________________________________________
dense_6 (Dense)              (None, 5)                 70        
_________________________________________________________________
activation_6 (Activation)    (None, 5)                 0         
=================================================================
Total params: 209
Trainable params: 209
Non-trainable params: 0
_________________________________________________________________


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部