Sequential搭建模型
构建一个最简单的神经网络模型,它只有3个全连接层组成:
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activationmodel = Sequential() # 顺序模型
输入层
model.add(Dense(7, input_shape=(4,))) # Dense就是常用的全连接层
model.add(Activation('sigmoid')) # 激活函数
隐层
model.add(Dense(13)) # Dense就是常用的全连接层
model.add(Activation('sigmoid')) # 激活函数
输出层
model.add(Dense(5))
model.add(Activation('softmax'))model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=["accuracy"])model.summary()
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_4 (Dense) (None, 7) 35
_________________________________________________________________
activation_4 (Activation) (None, 7) 0
_________________________________________________________________
dense_5 (Dense) (None, 13) 104
_________________________________________________________________
activation_5 (Activation) (None, 13) 0
_________________________________________________________________
dense_6 (Dense) (None, 5) 70
_________________________________________________________________
activation_6 (Activation) (None, 5) 0
=================================================================
Total params: 209
Trainable params: 209
Non-trainable params: 0
_________________________________________________________________
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
