DataX篇—阿里开源ETL同步工具

DataX篇—阿里开源ETL同步工具

  • DataX
    • 插件简介
    • DataX架构
    • 核心模块介绍
    • DataX 执行流程
    • 编程接口模板:
  • dataX-web 可视化管理工具
    • DataX-web架构图
    • Data-web 功能说明
    • 日志分析

DataX

插件简介

DataX 是阿里巴巴集团内被广泛使用的离线数据同步工具/平台,实现包括 MySQL、Oracle、SqlServer、Postgre、HDFS、Hive、ADS、HBase、TableStore(OTS)、MaxCompute(ODPS)、DRDS 等各种异构数据源之间高效的数据同步功能。
DataX本身作为数据同步框架,将不同数据源的同步抽象为从源头数据源读取数据的Reader插件,以及向目标端写入数据的Writer插件,理论上DataX框架可以支持任意数据源类型的数据同步工作。同时DataX插件体系作为一套生态系统, 每接入一套新数据源该新加入的数据源即可实现和现有的数据源互通。
数据源管理

DataX架构

DataX架构图
DataX本身作为离线数据同步框架,采用Framework + plugin架构构建。将数据源读取和写入抽象成为Reader/Writer插件,纳入到整个同步框架中。

  1. Reader: Reader为数据采集模块,负责采集数据源的数据,将数据发送给Framework。
  2. Writer: Writer为数据写入模块,负责不断向Framework取数据,并将数据写入到目的端。
  3. Framework: Framework用于连接reader和writer,作为两者的数据传输通道,并处理缓冲,流控,并发,数据转换等核心技术问题。

核心模块介绍

接下来我们以DataX执行一次数据同步作业流程的角度介绍下其核心模块:

  1. DataX完成单个数据同步的作业,我们称之为Job,DataX接受到一个Job之后,将启动一个进程来完成整个作业同步过程。DataX Job模块是单个作业的中枢管理节点,承担了数据清理、子任务切分、TaskGroup管理等功能。
  2. DataXJob启动后,会根据不同的源端切分策略,将Job切分成多个小的Task(子任务),以便于并发执行。Task便是DataX作业的最小单元,每一个Task都会负责一部分数据的同步工作。
  3. 切分多个Task之后,DataX Job会调用Scheduler模块,根据配置的并发数据量,将拆分成的Task重新组合,组装成TaskGroup(任务组)。每一个TaskGroup负责以一定的并发运行完毕分配好的所有Task,默认单个任务组的并发数量为5。
  4. 每一个Task都由TaskGroup负责启动,Task启动后,会固定启动Reader—>Channel—>Writer的线程来完成任务。
  5. DataX作业运行起来之后,Job监控并等待多个TaskGroup模块任务完成,等待所有TaskGroup任务完成后Job成功退出。否则,异常退出,进程退出值非0.
    DataX作业生命周期的时序图

DataX 执行流程

  1. 解析配置,包括job.json、core.json、plugin.json三个配置
  2. 设置jobId到configuration当中
  3. 启动Engine,通过Engine.start()进入启动程序
  4. 设置RUNTIME_MODE到configuration当中
  5. 通过JobContaine


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部