时间序列的截尾和拖尾_如何辨别统计中的拖尾和截尾??

展开全部

在sas软件中,我们可以通e5a48de588b63231313335323631343130323136353331333431376534过得到的自相关函数图和偏相关函数图来判断。

如果样本自相关系数和样本偏自相关系数在最初的阶明显大于2倍标准差,而后几乎95%的系数都落在2倍标准差的范围内,且非零系数衰减为小值波动的过程非常突然,通常视为k阶截尾;

如果有超过5%的样本相关系数大于2倍标准差,或者非零系数衰减为小值波动的过程比较缓慢或连续,通常视为拖尾。

相关示例

AR模型:自相关系数拖尾,偏自相关系数截尾;

MA模型:自相关系数截尾,偏自相关函数拖尾;

ARMA模型:自相关函数和偏自相关函数均拖尾。

根据统计图形和数据判断

根据输出结果,自相关函数图拖尾,偏自相关函数图截尾,且n从2或3开始控制在置信区间之内,因而可判定为AR(2)模型或者AR(3)模型。

这张图可以看到,很明显的自相关和偏自相关都是拖尾,因为数据到后面还有增大的情况,没有明显的收敛趋势。

如果图片成这样,估计十有八九是一个ARMA模型了。自相关7阶拖尾(n从7开始缩至置信区间),偏自相关2阶拖尾。

扩展资料:

截尾自相关和偏自相关图一般来说是判断拖尾阶尾和选择ARIMA模型的基本方


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部