强化学习RL 05: Alpha Go、Alpha Zero

目录

1. Alpha Go

1.1 Behavior Cloning

1.2 reinforcement learning of policy network

1.3 Alpha Zero

1.4 Monte-Carlo Tree Search

参考


1. Alpha Go

  • alphaGo actually uses a 19*19*48 tensor to store other information.
  • number of possible sequence of actions is 10^{170}
  • training in 3 steps:
    • initialize policy network using behavior cloning.
    • train the policy network using policy gradient.
    • after training the policy network, use it to train a value network.
  • Execution (actually play Go games)
    • Do Monte Carlo Tree Search (MCTS) using the policy and value networks.

1.1 Behavior Cloning

Behavior cloning is imitation learning rather than reinforcement learning.

problem:会对未见过的操作懵逼,然后break down

1.2 reinforcement learning of policy network

1.3 Alpha Zero

  • AlphaGo Zero does not use human experience. (no behavior cloning)

1.4 Monte-Carlo Tree Search

  • step 1: Selection
  • step 2: Expansion
  • step 3: Evaluation
  • step 4: Backup

参考

1. 王树森~强化学习 Reinforcement Learning

2.  https://www.cnblogs.com/pinard/category/1254674.html


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部