脉冲神经网络原理及应用,脉冲神经网络目标检测
如何评价浙大研制出国内首款支持脉冲神经网络的类脑芯片
第一,并没有太多的创新性。且不说国际上早有‘SNN(spikingneuralnetwork)’芯片,仅在国内,是不是国内首例都不好说,据我所知,清华也有课题组在做类似的芯片。
第二,在功能上没有大的突破。看浙大官方的新闻,该芯片“实现”的功能是“手写数字的识别和脑电波的解码”。业内人士应该都知道,这两项功能是机器学习领域已经玩儿烂的了,和SNN几乎没有一毛钱的关系。
第三,在算法上没有大的突破。具体的算法没有报道,但新闻上说,“最多可支持2048个神经元、400多万个神经突触及15个不同的突触延迟。
”我一看这神经元和突触比例吓一跳,原来是做了一个全连接的网络啊……并没有什么真实神经网络的算法引进。
而在制作工艺上,本研究采用传统的CMOS工艺,显然和IBM的研究不在一个时代(TrueNorth芯片里的神经元是百万级的)。
谷歌人工智能写作项目:神经网络伪原创

脉冲神经网络的简介
脉冲神经网络(SNN-SpikingNeuronNetworks)经常被誉为第三代人工神经网络A8U神经网络。第一代神经网络是感知器,它是一个简单的神经元模型并且只能处理二进制数据。
第二代神经网络包括比较广泛,包括应用较多的BP神经网络。但是从本质来讲,这些神经网络都是基于神经脉冲的频率进行编码(r
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
