Python 操作 MySQL 数据库的三个模块
python使用MySQL主要有两个模块,pymysql(MySQLdb)和SQLAchemy。
-
pymysql(MySQLdb)为原生模块,直接执行sql语句,其中pymysql模块支持python 2和python3,MySQLdb只支持python2,两者使用起来几乎一样。
-
SQLAchemy为一个ORM框架,将数据对象转换成SQL,然后使用数据API执行SQL并获取执行结果
-
另外DBUtils模块提供了一个数据库连接池,方便多线程场景中python操作数据库。
1.pymysql模块
安装:pip install pymysql
创建表格操作(注意中文格式设置)
#coding:utf-8
import pymysql#关于中文问题
#1. mysql命令行创建数据库,设置编码为gbk:create databse demo2 character set utf8;
#2. python代码中连接时设置charset="gbk"
#3. 创建表格时设置default charset=utf8#连接数据库
conn = pymysql.connect(host="localhost", user="root", passwd="", db='learningsql', charset='utf8', port=3306) #和mysql服务端设置格式一样(还可设置为gbk, gb2312)
#创建游标
cursor = conn.cursor()
#执行sql语句
cursor.execute("""create table if not exists t_sales(id int primary key auto_increment not null,nickName varchar(128) not null,color varchar(128) not null,size varchar(128) not null, comment text not null,saledate varchar(128) not null)engine=InnoDB default charset=utf8;""")# cursor.execute("""insert into t_sales(nickName,color,size,comment,saledate) # values('%s','%s','%s','%s','%s');""" % ("zack", "黑色", "L", "大小合适", "2019-04-20"))cursor.execute("""insert into t_sales(nickName,color,size,comment,saledate) values(%s,%s,%s,%s,%s);""" , ("zack", "黑色", "L", "大小合适", "2019-04-20"))
#提交
conn.commit()
#关闭游标
cursor.close()
#关闭连接
conn.close()
增删改查:
注意execute执行sql语句参数的两种情况:
-
execute(
"insert into t_sales(nickName, size) values('%s','%s');" % ("zack","L")) #此时的%s为字符窜拼接占位符,需要引号加'%s' (有sql注入风险) -
execute(
"insert into t_sales(nickName, size) values(%s,%s);" , ("zack","L")) #此时的%s为sql语句占位符,不需要引号%s
#***************************增删改查******************************************************
conn = pymysql.connect(host="localhost", user="root", passwd="", db='learningsql', charset='utf8', port=3306) #和mysql服务端设置格式一样(还可设置为gbk, gb2312)
#创建游标
cursor = conn.cursor()insert_sql = "insert into t_sales(nickName,color,size,comment,saledate) values(%s,%s,%s,%s,%s);"
#返回受影响的行数
row1 = cursor.execute(insert_sql,("Bob", "黑色", "XL", "便宜实惠", "2019-04-20"))update_sql = "update t_sales set color='白色' where id=%s;"
#返回受影响的行数
row2 = cursor.execute(update_sql,(1,))select_sql = "select * from t_sales where id>%s;"
#返回受影响的行数
row3 = cursor.execute(select_sql,(1,))delete_sql = "delete from t_sales where id=%s;"
#返回受影响的行数
row4 = cursor.execute(delete_sql,(4,))#提交,不然无法保存新建或者修改的数据(增删改得提交)
conn.commit()
cursor.close()
conn.close()
批量插入和自增id
#***************************批量插入******************************************************
conn = pymysql.connect(host="localhost", user="root", passwd="", db='learningsql', charset='utf8', port=3306) #和mysql服务端设置格式一样(还可设置为gbk, gb2312)
#创建游标
cursor = conn.cursor()insert_sql = "insert into t_sales(nickName,color,size,comment,saledate) values(%s,%s,%s,%s,%s);"
data = [("Bob", "黑色", "XL", "便宜实惠", "2019-04-20"),("Ted", "黄色", "M", "便宜实惠", "2019-04-20"),("Gary", "黑色", "M", "穿着舒服", "2019-04-20")]
row1 = cursor.executemany(insert_sql, data)conn.commit()
#为插入的第一条数据的id,即插入的为5,6,7,new_id=5
new_id = cursor.lastrowid
print(new_id)
cursor.close()
conn.close()
获取查询数据
#***************************获取查找sql的查询数据******************************************************
conn = pymysql.connect(host="localhost", user="root", passwd="", db='learningsql', charset='utf8', port=3306) #和mysql服务端设置格式一样(还可设置为gbk, gb2312)
#创建游标
cursor = conn.cursor()select_sql = "select id,nickname,size from t_sales where id>%s;"
cursor.execute(select_sql, (3,))row1 = cursor.fetchone() #获取第一条数据,获取后游标会向下移动一行
row_n = cursor.fetchmany(3) #获取前n条数据,获取后游标会向下移动n行
row_all = cursor.fetchall() #获取所有数据,获取后游标会向下移动到末尾
print(row1)
print(row_n)
print(row_all)
#conn.commit()
cursor.close()
conn.close()
注:在fetch数据时按照顺序进行,可以使用cursor.scroll(num,mode)来移动游标位置,如:
-
cursor.scroll(1,mode='relative') # 相对当前位置移动
-
cursor.scroll(2,mode='absolute') # 相对绝对位置移动
fetch获取数据类型
fetch获取的数据默认为元组格式,还可以获取字典类型的,如下:
#***************************获取字典格式数据******************************************************
conn = pymysql.connect(host="localhost", user="root", passwd="", db='learningsql', charset='utf8', port=3306) #和mysql服务端设置格式一样(还可设置为gbk, gb2312)
#创建游标
cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)select_sql = "select id,nickname,size from t_sales where id>%s;"
cursor.execute(select_sql, (3,))row1 = cursor.fetchall() print(row1)conn.commit()
cursor.close()
conn.close()
2.SQLAlchmy框架
SQLAlchemy的整体架构如下,建立在第三方的DB API上,将类和对象操作转换为数据库sql,然后利用DB API执sql语句得到结果。其适用于多种数据库。另外其内部实现了数据库连接池,方便进行多线程操作。
-
Engine,框架的引擎
-
Connection Pooling ,数据库连接池
-
Dialect(
http://docs.sqlalchemy.org/en/latest/dialects/index.html),选择连接数据库的DB API种类,(pymysql,mysqldb等)`` -
Schema/Types,架构和类型
-
SQL Exprression Language,SQL表达式语言
-
DB API(
https://www.python.org/dev/peps/pep-0249/):Python Database API Specification

2.1 执行原生sql
安装:pip install sqlalchemy
SQLAlchmy也可以不利用ORM,使用数据库连接池,类似pymysql模块执行原生sql
#coding:utf-8from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, String, Integer
import threadingengine = create_engine("mysql+pymysql://root@127.0.0.1:3306/learningsql?charset=utf8",max_overflow = 0, #超过连接池大小外最多创建的连接,为0表示超过5个连接后,其他连接请求会阻塞 (默认为10)pool_size = 5, #连接池大小(默认为5)pool_timeout = 30, #连接线程池中,没有连接时最多等待的时间,不设置无连接时直接报错 (默认为30)pool_recycle = -1) #多久之后对线程池中的线程进行一次连接的回收(重置) (默认为-1)# def task():# conn= engine.raw_connection() #建立原生连接,和pymysql的连接一样# cur = conn.cursor()# cur.execute("select * from t_sales where id>%s",(2,))# result = cur.fetchone()# cur.close()# conn.close()# print(result)# def task():# conn = engine.contextual_connect() #建立上下文管理器连接,自动打开和关闭# with conn:# cur = conn.execute("select * from t_sales where id>%s",(2,))# result = cur.fetchone()# print(result)def task():cur =engine.execute("select * from t_sales where id>%s",(2,)) #engine直接执行result = cur.fetchone()cur.close()print(result)if __name__=="__main__":for i in range(10):t = threading.Thread(target=task)t.start()
2.2 执行ORM语句
A. 创建和删除表
#coding:utf-8import datetime
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, String, Integer, DateTime, TextBase = declarative_base()class User(Base):__tablename__="users"id = Column(Integer,primary_key=True)name = Column(String(32),index=True, nullable=False) #创建索引,不为空email = Column(String(32),unique=True)ctime = Column(DateTime, default = datetime.datetime.now) #传入方法名datetime.datetime.nowextra = Column(Text,nullable=True) __table_args__ = {# UniqueConstraint('id', 'name', name='uix_id_name'), #设置联合唯一约束# Index('ix_id_name', 'name', 'email'), # 创建索引}def create_tbs():engine = create_engine("mysql+pymysql://root@127.0.0.1:3306/learningsql?charset=utf8",max_overflow=2,pool_size=5)Base.metadata.create_all(engine) #创建所有定义的表def drop_dbs():engine = create_engine("mysql+pymysql://root@127.0.0.1:3306/learningsql?charset=utf8",max_overflow=2,pool_size=5)Base.metadata.drop_all(engine) #删除所有创建的表if __name__=="__main__":create_tbs() #创建表#drop_dbs() #删除表
B.表中定义外键关系(一对多,多对多)
思考:下面代码中的一对多关系,relationship 定义在了 customer 表中,应该定义在 PurchaseOrder 更合理?
注意:mysql 数据库中避免使用 order做为表的名字,order 为一个 mysql 关键字,做为表名字时必须用反引号order (键盘数字1旁边的符号)
#coding:utf-8from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column,Integer,String,Text,DateTime,ForeignKey,Float
from sqlalchemy.orm import relationship
import datetimeengine = create_engine("mysql+pymysql://root@127.0.0.1:3306/learningsql?charset=utf8") #数据库有密码时,//root:12345678@127.0.0.1:3306/
Base = declarative_base()class Customer(Base):__tablename__="customer" #数据库中保存的表名字id = Column(Integer,primary_key=True)name = Column(String(64),index=True,nullable=False)phone = Column(String(16),nullable=False)address = Column(String(256),nullable=False)purchase_order_id = Column(Integer,ForeignKey("purchase_order.id")) #关键关系,关联表的__tablename__="purchase_order"# 和建立表结构无关,方便外键关系查询,backref反向查询时使用order_obj.customerpurchase_order = relationship("PurchaseOrder",backref="customer")class PurchaseOrder(Base): __tablename__ = "purchase_order" #mysql数据库中表的名字避免使用order,order为一个关键字,使用时必须用反引号`order` (键盘数字1旁边的符号)id=Column(Integer,primary_key=True)cost = Column(Float,nullable=True)ctime = Column(DateTime,default =datetime.datetime.now)desc = Column(String(528))#多对多关系时,secondary为中间表product = relationship("Product",secondary="order_to_product",backref="purchase_order")class Product(Base):__tablename__ = "product"id = Column(Integer,primary_key=True)name = Column(String(256))price = Column(Float,nullable=False)class OrdertoProduct(Base):__tablename__ = "order_to_product"id = Column(Integer,primary_key=True)product_id = Column(Integer,ForeignKey("product.id"))purchase_order_id = Column(Integer,ForeignKey("purchase_order.id"))if __name__ == "__main__":Base.metadata.create_all(engine)#Base.metadata.drop_all(engine)
C.增删改查操作
增删改查
#coding:utf-8from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column,Integer,String,Text,DateTime,ForeignKey,Float
from sqlalchemy.orm import relationship,sessionmaker
from sqlalchemy.sql import text
import datetimeengine = create_engine("mysql+pymysql://root@127.0.0.1:3306/learningsql?charset=utf8") #数据库有密码时,//root:12345678@127.0.0.1:3306/, 设置utf8防止中文乱码
Base = declarative_base()class Customer(Base):__tablename__="customer" #数据库中保存的表名字id = Column(Integer,primary_key=True)name = Column(String(64),index=True,nullable=False)phone = Column(String(16),nullable=False)address = Column(String(256),nullable=False)purchase_order_id = Column(Integer,ForeignKey("purchase_order.id")) #关键关系,关联表的__tablename__="purchase_order"# 和建立表结构无关,方便外键关系查询,backref反向查询时使用order_obj.customerpurchase_order = relationship("PurchaseOrder",backref="customer")class PurchaseOrder(Base): __tablename__ = "purchase_order" #mysql数据库中表的名字避免使用order,order为一个关键字,使用时必须用反引号`order` (键盘数字1旁边的符号)id=Column(Integer,primary_key=True)cost = Column(Float,nullable=True)ctime = Column(DateTime,default =datetime.datetime.now)desc = Column(String(528))#多对多关系时,secondary为中间表product = relationship("Product",secondary="order_to_product",backref="purchase_order")class Product(Base):__tablename__ = "product"id = Column(Integer,primary_key=True)name = Column(String(256))price = Column(Float,nullable=False)class OrdertoProduct(Base):__tablename__ = "order_to_product"id = Column(Integer,primary_key=True)product_id = Column(Integer,ForeignKey("product.id"))purchase_order_id = Column(Integer,ForeignKey("purchase_order.id"))if __name__ == "__main__":#Base.metadata.create_all(engine)#Base.metadata.drop_all(engine)Session = sessionmaker(bind=engine)#每次进行数据库操作时都要创建sessionsession = Session()#*****************增加数据********************# pur_order = PurchaseOrder(cost=19.7,desc="python编程之路")# session.add(pur_order)# session.add_all(# [PurchaseOrder(cost=39.7,desc="linux操作系统"),# PurchaseOrder(cost=59.6,desc="python cookbook")])# session.commit()#*****************修改数据********************#session.query(PurchaseOrder).filter(PurchaseOrder.id>2).update({"cost":29.7})#session.query(PurchaseOrder).filter(PurchaseOrder.id==2).update({"cost":PurchaseOrder.cost+40.1},synchronize_session=False) #synchronize_session用于query在进行delete or update操作时,对session的同步策略。#session.commit()#*****************删除数据********************#session.query(PurchaseOrder).filter(PurchaseOrder.id==1).delete()#session.commit()#*****************查询数据********************#ret = session.query(PurchaseOrder).all()# ret = session.query(PurchaseOrder).filter(PurchaseOrder.id==2).all() #包含对象的列表# ret = session.query(PurchaseOrder).filter(PurchaseOrder.id==2).first() #单个对象# ret = session.query(PurchaseOrder).filter_by(id=2).all() #通过列名字的表达式# ret = session.query(PurchaseOrder).filter_by(id=2).first()#ret = session.query(PurchaseOrder).filter(text("id<:value and cost>:price")).params(value=6,price=15).order_by(PurchaseOrder.cost).all()#ret = session.query(PurchaseOrder).from_statement(text("SELECT * FROM purchase_order WHERE cost>:price")).params(price=40).all()# print ret# for i in ret:# print i.id, i.cost, i.ctime,i.desc#ret2 = session.query(PurchaseOrder.id,PurchaseOrder.cost.label('totalcost')).all() #只查询两列,ret2为列表#print ret2#关闭sessionsession.close()
查询语句
# 条件
ret = session.query(Users).filter_by(name='alex').all()
ret = session.query(Users).filter(Users.id > 1, Users.name == 'eric').all()
ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == 'eric').all()
ret = session.query(Users).filter(Users.id.in_([1,3,4])).all()
ret = session.query(Users).filter(~Users.id.in_([1,3,4])).all()
ret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name='eric'))).all()
from sqlalchemy import and_, or_
ret = session.query(Users).filter(and_(Users.id > 3, Users.name == 'eric')).all()
ret = session.query(Users).filter(or_(Users.id < 2, Users.name == 'eric')).all()
ret = session.query(Users).filter(or_(Users.id < 2,and_(Users.name == 'eric', Users.id > 3),Users.extra != "")).all()# 通配符
ret = session.query(Users).filter(Users.name.like('e%')).all()
ret = session.query(Users).filter(~Users.name.like('e%')).all()# 限制
ret = session.query(Users)[1:2]# 排序
ret = session.query(Users).order_by(Users.name.desc()).all()
ret = session.query(Users).order_by(Users.name.desc(), Users.id.asc()).all()# 分组
from sqlalchemy.sql import funcret = session.query(Users).group_by(Users.extra).all()
ret = session.query(func.max(Users.id),func.sum(Users.id),func.min(Users.id)).group_by(Users.name).all()ret = session.query(func.max(Users.id),func.sum(Users.id),func.min(Users.id)).group_by(Users.name).having(func.min(Users.id) >2).all()# 连表ret = session.query(Users, Favor).filter(Users.id == Favor.nid).all()ret = session.query(Person).join(Favor).all()ret = session.query(Person).join(Favor, isouter=True).all()# 组合
q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union(q2).all()q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union_all(q2).all()
补充
#coding:utf-8from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from sqlalchemy.sql import text, func
from sqlalchemy_orm2 import PurchaseOrder #导入定义的PurchaseOrder表格类engine = create_engine("mysql+pymysql://root@127.0.0.1:3306/learningsql?charset=utf8")
Session = sessionmaker(bind=engine)
session = Session()
#查询
ret = session.execute("select * from purchase_order where id=:value",params={"value":3})
print ret
for i in ret:print i.id, i.cost, i.ctime,i.desc#插入
purchase_order = PurchaseOrder.__table__ #拿到PurchaseOrder表格对象
ret=session.execute(purchase_order.insert(),[{"cost":46.3,"desc":'python2'},{"cost":43.3,"desc":'python3'}])
session.commit()
print(ret.lastrowid)
session.close()# 关联子查询
subqry = session.query(func.count(Server.id).label("sid")).filter(Server.id == Group.id).correlate(Group).as_scalar()
result = session.query(Group.name, subqry)
"""
SELECT `group`.name AS group_name, (SELECT count(server.id) AS sid
FROM server
WHERE server.id = `group`.id) AS anon_1
FROM `group`
"""
D.多线程操作
#coding:utf-8from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from sqlalchemy_orm2 import Product
from threading import Threadengine = create_engine("mysql+pymysql://root@127.0.0.1:3306/learningsql?charset=utf8",max_overflow=0,pool_size=5)
Session = sessionmaker(bind=engine)def task(name,price):session = Session()pro = Product(name=name,price=price)session.add(pro)session.commit()session.close()if __name__=="__main__":for i in range(6):t = Thread(target=task,args=("pro"+str(i),i*5))t.start()
E. 通过relationship操纵一对多和多对多关系
一对多
#coding:utf-8from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from sqlalchemy.sql import text, func
from sqlalchemy_orm2 import PurchaseOrder,Product,OrdertoProduct,Customer #导入定义的表格类engine = create_engine("mysql+pymysql://root@127.0.0.1:3306/learningsql?charset=utf8")
Session = sessionmaker(bind=engine)
session = Session()# #通过定义的关键关系添加(id值)
# cus1 = Customer(name="zack",phone="13567682333",address="Nanjing",purchase_order_id=3)
# session.add(cus1)# #通过relationship正向添加
# cus2 = Customer(name="zack2",phone="13567682333",address="Nanjing",purchase_order=PurchaseOrder(cost=53,desc="java"))
# session.add(cus2)
# session.commit()#通过relationship反向添加
# purchase_order=PurchaseOrder(cost=53,desc="php")
# cus3 = Customer(name="zack3",phone="13567682333",address="Nanjing")
# cus4 = Customer(name="zack4",phone="13567682333",address="Nanjing")
# purchase_order.customer=[cus3,cus4] #cus3,cus4的purchase_order_id都是purchase_order.id值,即同时添加了两组外键关系
# session.add(purchase_order)
# session.commit()##通过relationship正向查询
cus = session.query(Customer).first()
print(cus.purchase_order_id)
print(cus.purchase_order.desc)#通过relationship反向查询
pur = session.query(PurchaseOrder).filter(PurchaseOrder.id==3).first()
print(pur.desc)
print(pur.customer) #返回一个list
多对多
#coding:utf-8from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from sqlalchemy.sql import text, func
from sqlalchemy_orm2 import PurchaseOrder,Product,OrdertoProduct,Customer #导入定义的表格类engine = create_engine("mysql+pymysql://root@127.0.0.1:3306/learningsql?charset=utf8")
Session = sessionmaker(bind=engine)
session = Session()# session.add_all([Product(name="java",price=24),# Product(name="python",price=34),# Product(name="php",price=27)])
# session.commit()# #通过定义的关键关系添加(id值)
# op = OrdertoProduct(product_id=1,purchase_order_id=16)
# session.add(op)
# session.commit()# #通过relationship添加
# pur = PurchaseOrder(cost=27,desc="xxxx")
# pur.product = [Product(name="C++",price=60),] #正向
# session.add(pur)# pro = Product(name="C",price=40)
# pro.purchase_order=[PurchaseOrder(cost=27,desc="xxxx"),] #反向
# session.add(pro)
# session.commit()#通过relationship正向查询
pur = session.query(PurchaseOrder).filter(PurchaseOrder.id==19).first()
print(pur.desc)
print(pur.product) #结果为列表#通过relationship反向查询
pro = session.query(Product).filter(Product.id==5).first()
print(pro.name)
print(pro.purchase_order) #结果为列表session.close()
3.数据库连接池
对于ORM框架,其内部维护了链接池,可以直接通过多线程操控数据库。对于pymysql模块,通过多线程操控数据库容易出错,得加锁串行执行。进行并发时,可以利用DBUtils模块来维护数据库连接池。
3.1 多线程操控pymysql
不采用DBUtils连接池时, pymysql多线程代码如下:
每个线程创建链接
import pymysql
import threadind#**************************无连接池*******************************
#每个线程都要创立一次连接,线程并发操作间可能有问题?
def func():conn = pymysql.connect(host="127.0.0.1",port=3306,db="learningsql",user="root",passwd="",charset="utf8")cursor = conn.cursor()cursor.execute("select * from user where nid>1;")result = cursor.fetchone()print(result)cursor.close()conn.close()if __name__=="__main__":for i in range(5):t = threading.Thread(target=func,name="thread-%s"%i)t.start()
一个连接串行执行
#**************************无连接池*******************************
#创建一个连接,加锁串行执行
from threading import Lock
import pymysql
import threading
conn = pymysql.connect(host="127.0.0.1",port=3306,db="learningsql",user="root",passwd="",charset="utf8") lock = Lock()
def func():with lock:cursor = conn.cursor()cursor.execute("select * from user where nid>1;")result = cursor.fetchone()print(result)cursor.close()#conn.close()不能在线程中关闭连接,否则其他线程不可用了if __name__=="__main__":threads = []for i in range(5):t = threading.Thread(target=func,name="thread-%s"%i)threads.append(t)t.start()for t in threads:t.join()conn.close()
3.2 DBUtils连接池
DBUtils连接池有两种连接模式:PersistentDB和PooledDB
官网文档:https://cito.github.io/DBUtils/UsersGuide.html
模式一(DBUtils.PersistentDB):
为每个线程创建一个连接,线程即使调用了close方法,也不会关闭,只是把连接重新放到连接池,供自己线程再次使用。当线程终止时,连接自动关闭。
PersistentDB使用代码如下:
#coding:utf-8from DBUtils.PersistentDB import PersistentDB
import pymysql
import threadingpool = PersistentDB(creator = pymysql, # 使用链接数据库的模块maxusage = None, # 一个链接最多被重复使用的次数,None表示无限制setsession=[], # 开始会话前执行的命令列表。如:["set datestyle to ...", "set time zone ..."]ping = 0, # ping MySQL服务端,检查是否服务可用。# 如:0 = None = never, 1 = default = whenever it is requested, 2 = when a cursor is created, 4 = when a query is executed, 7 = alwayscloseable = False, # 如果为False时, conn.close() 实际上被忽略,供下次使用,再线程关闭时,才会自动关闭链接。如果为True时, conn.close()则关闭链接,那么再次调用pool.connection时就会报错,因为已经真的关闭了连接(pool.steady_connection()可以获取一个新的链接)threadlocal = None, # 本线程独享值得对象,用于保存链接对象,如果链接对象被重置host="127.0.0.1",port = 3306,user = "root",password="",database="learningsql",charset = "utf8"
)def func():conn = pool.connection()cursor = conn.cursor()cursor.execute("select * from user where nid>1;")result = cursor.fetchone()print(result)cursor.close()conn.close()if __name__ == "__main__":for i in range(5):t = threading.Thread(target=func,name="thread-%s"%i)t.start()
模式二(DBUtils.PooledDB):
创建一批连接到连接池,供所有线程共享使用。
(由于pymysql、MySQLdb等threadsafety值为1,所以该模式连接池中的线程会被所有线程共享。)
PooledDB使用代码如下:
from DBUtils.PooledDB import PooledDB
import pymysql
import threading
import timepool = PooledDB(creator = pymysql, # 使用链接数据库的模块maxconnections = 6, # 连接池允许的最大连接数,0和None表示不限制连接数mincached = 2, # 初始化时,链接池中至少创建的空闲的链接,0表示不创建maxcached = 5, # 链接池中最多闲置的链接,0和None不限制maxshared = 3, # 链接池中最多共享的链接数量,0和None表示全部共享。PS: 无用,因为pymysql和MySQLdb等模块的 threadsafety都为1,所有值无论设置为多少,_maxcached永远为0,所以永远是所有链接都共享。blocking = True, # 连接池中如果没有可用连接后,是否阻塞等待。True,等待;False,不等待然后报错maxusage = None, # 一个链接最多被重复使用的次数,None表示无限制setsession = [], # 开始会话前执行的命令列表。如:["set datestyle to ...", "set time zone ..."]ping = 0, # ping MySQL服务端,检查是否服务可用。# 如:0 = None = never, 1 = default = whenever it is requested, 2 = when a cursor is created, 4 = when a query is executed, 7 = alwayshost="127.0.0.1",port = 3306,user="root",password="",database = "learningsql",charset = "utf8"
)def func():conn = pool.connection()cursor = conn.cursor()cursor.execute("select * from user where nid>1;")result = cursor.fetchone()print(result)time.sleep(5) #为了查看mysql端的线程数量cursor.close()conn.close()if __name__=="__main__":for i in range(5):t = threading.Thread(target=func,name="thread-%s"%i)t.start()
上述代码中加入了sleep(5)使线程连接数据库时间延长,方便查看mysql数据库连接线程情况,下图分别为代码执行中和执行后的线程连接情况,可以发现,代码执行时,同时有6个线程连接上了数据库(有一个为mysql命令客户端),代码执行后,只有一个线程连接数据库,但仍有5个线程等待连接。
(show status like "Threads%" 查看线程连接情况)

本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!
